

3rd ILSF Advanced School on Synchrotron Radiation and Its Applications

September 14-16, 2013

Electromagnets in Synchrotron Design and Fabrication

Prepared by: Farhad Saeidi, Jafar Dehghani Mechanic Group ,Magnet section, *Institute for Research in Fundamental Sciences* ILSF

References

- S.Fatehi, M.khabazi, "2nd ILSF school on synchrotron radiation and its applications" October2012.
- Th.Zickler, CERN Accelerator School, Specialized Course on Magnets, Bruges, Belgium, 16-25 June 2009.
- D. Einfeld, "Magnets", CELLS CAS, Frascati, Nov. 2008.
- Jack Tanab, "Iron Dominated Electromagnets Design, Fabrication, Assembly and Measurements", January 6, 2005.
- G.E.Fisher,"Iron Dominated Magnets", Stanford Linear Accelerator Center, 1985.
- H.Ghasem, F.Saeidi, first ILSF school on synchrotron radiation and its applications. Sepember 2011.
- H. Wiedemann, *Particle Accelerator Physics I*, Springer, 1999.
- K.Wille, *The physics of Particle Accelerators*, Oxford University, 2000.

OutLine

- Light sources and magnets
- Magnet types
- Dipoles
- Quadrupoles
- Sextupoles
- Combined magnets
- Design Procedure
- ILSF Prototype magnets
- Fabrication Procedure

Electromagnet types

*****Each magnet has 2 main parts :

- **1.** Iron yoke(includes back leg , pole root, pole ,...)
- 2. Coils

Dipole magnet(Bending magnet)

•Has 2 poles,2 coils

Bends the electrons in a single curved trajectory.
Injection of particles into the accelerator
Extraction of particles from the accelerator
Production of synchrotron radiation

Dipole main parameters

B (magnetic field at center) L (length) h (half gap height) GFR (good field region),

Pole profile eq.: y=h

$$B_{y}(x) = const$$

Х

Standard Dipole Geometries

Back leg

	C-core	H-type	Window Frame
advantages	easy access		no pole shims
	classic design	symmetric	symmetric
		rigid	rigid
			compact
disadvantages	pole shims req.	pole shims req.	High ampere turn
	asymmetric	difficult access	difficult access
	less rigid		insulation thickness

3rd ILSF School on Synchrotron Radiation and Its Applications

Normal Conducting Dipole Magnet

According to Maxwell it is:

 $\oint \overline{H} \bullet \overline{dl} = \oint_{Path1} \overline{H} \bullet \overline{dl} + \oint_{Path2} \overline{H} \bullet \overline{dl} = NI$

Along Path 1
$$|H| = \frac{B}{\mu_0}$$
 and $H||$

Therefore: $\oint_{Path1} \overline{H} \bullet \overline{dl} = \frac{Bh}{\mu_0}$

Along path 2, $|H| = \frac{B}{\mu \mu_0}$ For iron; $\mu \approx 1000$ Therefore; $\oint \overline{H} \cdot \overline{dl} = |H|_{iron} l_{iron} << \frac{Bh}{\mu_0} \approx 0$ Therefore: $\overline{H} \cdot \overline{dl} = 0$ Finally: $\oint \overline{H} \cdot \overline{dl} = NI \approx \frac{Bh}{\mu_0}$ B magnetic flux h (gap height) μ_0 air permeability

Magnetic length

Coming from ∞ , B increases towards the magnet center (stray flux)

 $\int B dz$

 $+\infty$

'Magnetic' length > iron length

Magnetic length: $L_{magnetic} = -\infty$

$$L_{magnetic} = L_{iron} + 2*(2h)*K$$

2h: gap height k: geometry specific constant (≈ 0.56)

K gets smaller in case of: Soturotion

By

Iron length

Magnetic length

Beam Direction

3rd ILSF School on Synchrotron Radiation and Its Applications

Quadrupole magnet

g (magnetic gradient field)

- 4 poles, 4 coils
- Focus the beam and prevent deviating
- Zero field in center

Quadrupole main

parameters

- Strong gradient g(T/m)
- Placed in straight sections between bending magnets

L (length)

R (Aperture)

$$B_y(x) = g x$$

Standard Quadrupole Geometries

n

Normal Conducting Quadrupole Magnet

integration path split in 3 sections

$$\int_{\partial a} \mathbf{H} \cdot \mathbf{T} \, \mathrm{d}s = N I$$
$$\int_{s_1} \mathbf{H}_1 \cdot \mathbf{T}_1 \, \mathrm{d}s + \int_{s_2} \mathbf{H}_2 \cdot \mathbf{T}_2 \, \mathrm{d}s + \int_{s_3} \mathbf{H}_3 \cdot \mathbf{T}_3 \, \mathrm{d}s$$

field defined by gradient
$$g$$
 $B_x = gy$; $B_y = gx$
along s1: $H = \frac{g}{\mu_0} \sqrt{x^2 + y^2} = \frac{g}{\mu_0} r$.
along s3: $H \cdot T = 0$.
 $H \cdot T = 0$.
 $M \cdot T = 0$.
 $H \cdot T = 0$.
 $M \cdot T = 0$.
 $g = \frac{2\mu_0 NI}{r_a^2}$ g field gradient ra Aperture μ_0 air permeability

Magnetic length

'Magnetic' length > iron length

Magnetic length For a Quadrupole:

 $L_{magnetic} = L_{iron} + 2RK$

R: Aperturek: geometry specific constant (≈ 0.45)

Sextupole magnet

Sextupole magnet correct chromatic aberration due to focusing errors on particles with different energy

Sextupole main parameters

B" (Sextupole component)L (length)R (Aperture)GFR (good field region)

$$3yx^2 - y^3 = R^3$$

$$B_y(x) = \frac{1}{2}B''x^2$$

Normal Conducting Sextupole Magnet

Along Path 1:
$$B'(r) = \int B'' dr = B'' r$$

 $B(r) = \int B'' r dr = \frac{B'' r^2}{2}$
 $H \| r$ and $\| H(r) \| = \frac{B'' r^2}{2\mu_0}$
 $\oint \overline{H} \bullet \overline{dl} = \int_0^R \frac{B'' r^2 dr}{2\mu_0} = \frac{B'' R^3}{6\mu_0}$
Finally; $\oint \overline{H} \bullet \overline{dl} = \left[NI \approx \frac{B'' R^3}{6\mu_0} \right]$

B´´ Sextupole component R Aperture μOair permeability

Combined magnets

✓ Functions generated by pole shape (sum a scalar potentials):
 Amplitudes cannot be varied independently

• Dipole + quadrupole

$$v = \frac{h(0)}{1 + \frac{gx}{B_0}}$$

$$y = \frac{h(0)}{1 + \frac{gx}{B_0} + \frac{B''x^2}{2B_0}}$$

• Quadrupole + sextupole

$$gxy + B''(x^2y - \frac{y^3}{3}) = cte.$$

ILSF-IPM, Sep. 2013

18

Pole shape	Field distribution	Pole equation	B _y on x-axis
		$y= \pm r$ Bend the electro	B _y = a ₁ = B _o = const. n beam
	-	$2xy=\pm r^2$ focuse the electr	B _y = a ₂ x on beam
	· ·	$3x^2y - y^3 = \pm r^3$ correct chromatic a	B _y = a ₃ (x²- y²) aberration

Summary

Magnet Design

Magnet Design Procedure

2D design: (Poisson Superfish ,FEMM, Opera2D ...)

Use pre-processor or modeler to build geometryProfit from symmetries to reduce number of elements

Yoke materials

Today's standard: cold rolled, non-oriented electro-steel sheets

• Massive iron only for dc magnets

•Magnetic and mechanical properties can be adjusted by final annealing in decarbonized atmosphere – the smaller carbon content results in better magnetic properties (Increase in permeability Decrease in hysteresis loss and aging)

- Magnetic properties (permeability, coercivity) should be within small tolerances.
- Homogeneity and reproducibility among the magnets of a series can be enhanced by selection, sorting or shuffling.
- Organic or inorganic coating for insulation and bonding.
- Material is usually cheaper, but laminated yokes are commonly used esp. in Booster rings. (Eddy current)

• Packing factor should be kept bellow 98%. Common used materials:

• AISI1010 (max 0.1 % carbon content & max 0.3% silicon content)

•1200-100A(less than 0.003% carbon content & less than 1.3% silicon content)

•M400-50A(0.02% carbon content & 2.4 % silicon content)

•M800-50A(0.01% carbon content & 1.7 % silicon content)

3rd ILSF School on Synchrotron Radiation and Its Applications

Data source: Thyssen/Germany

•Sheet thickness: $0.3 \le t \le 1.5$ mm •Specific weight: 7.60 $\leq \delta \leq$ 7.85 g/cm3

•Coercivity: Hc< 70 (±10) A/m

•Electrical resistivity @ 20°C: 0.16 (low Si) $\leq \rho \leq 0.61 \ \mu\Omega m$ (high Si)

Pole Optimization

Summary of 'allowed harmonics' in fully symmetric magnets:

Fundamental geometry	'Allowed' harmonics
Dipole, n = 1	n = 3, 5, 7,
	(6 pole, 10 pole, etc.)
Quadrupole, n = 2	n = 6, 10, 14,
	(12 pole, 20 pole, etc.)
Sextupole, n = 3	n = 9, 15, 21,
	(18 pole, 30 pole, etc.)
Octupole, n = 4	n = 12, 20, 28,
	(24 pole, 40 pole, etc.)

By cutting the pole profile in order to have space for the introduction of the coils the field distribution will be disturbed and higher multipoles will be introduced. Rising the amount of these multipolesleads to BAD field quality i.e. more than0.1%SHIMMING is needed

Pole Optimization-Shimming process

Pole Optimization is an iteration process & should be continued till one reaches the desire field quality i.e. $< 10^{-4}$

3rd ILSF School on Synchrotron Radiation and Its Applications

Field Quality Calculations

$$\Delta B = \frac{B - B_0}{B_0}$$

Dipole

Quadrupole

Sextupole

 $B_0 = const central field$ $B_0 = g_0 x$ $B_0 = \frac{1}{2} B_0'' x^2$

B(x) Is the field at each point calculated by simulation

700

Saturation test

Harmonic analysis

Harmonic analysis & Dynamic Aperture

-	-			
		Dipole		
	Field component	b _n	B_n/B_1 [@12 mm]	
n=1	Dipole	7.24E-01	1	
n=3	Sextupole	5.46E-02	1.086E-05	
n=5	10-pole	4.62E+02	1.322E-05	
n=7	14-pole	-1.33E+04	-5.470E-08	
<i>n</i> =9	18-pole	-1.67E+09	-9.934E-07	
	Q	uadrupole	•	P = Dulls P/P=0
	Field component	b _n	B_n/B_2 [@18 mm]	25 Doits P/P=-3%
n=2	Quadrupole	2.50 E+1	1	Deite P/P=0 (with multipole)
n=6	12-pole	9.78 E+3	4.10 E-5	Delta P/P=3% (with multipole)
n=10	20-pole	-2.95 E+8	-1.30 E-7	20 Physical aperture
n=14	28-pole	-1.23 E+16	-5.70 E-7	
n=18	36-pole	-1.44 E+22	-7.03 E-8	
		Sextupole	•	15
	Field component	b _n	B_n/B_3 [@16 mm]	
n=3	Sextupole	4.50 E+2	1	
n=9	18-pole	-2.07 E+10	-7.71 E-4	10
n=15	30-pole	-6.76 E+18	-4.22 E-6	
n=21	42-pole	1.13 E+27	1.18 E-8	
n=27	54-pole	4.45 E+35	7.82 E-11	5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
				x (mm)

3D design:(Radia,Tosca,Mermaid,Flux3D...)

3D design is necessary to study :

The longitudinal field distribution
End effects in the yoke
End effects from coils
Magnets where the aperture is large compared to the length

Unlike 2D, in 3D:

all regions with current density have to be modeled completely

Longitudinal shimming (Chamfering)

Dipoles:

Rogowsky roll off or angular cutDepth and angle adjusted using 3D codes or measurements

Quadrupoles:

•Angular cut at the end

Sextupoles: •Usually not cham

•Usually not chamfered

Chamfer should be chosen in such a way that maintain magnetic length constant across the good field region

ILSF Prototype Magnet I

•	
	3
	പ് പ
2	Ř
	2
	$\overline{\mathbf{v}}$
•	3
2	
	ã –
	2
	3
	\leq
	0
2	
)	3
	2
	5
	2
-	g
2	2
	2
	0
	~
٦	5
	2
	2
	<u>ເ</u>
	2
	2_
-	
Ĩ	
	~
	<u> </u>
	~
	0
	0
	2
	2
1	2
Ċ	>
ĺ	
l	2
ļ	1
9	
Î	

 3^{r}

suo

Parameter	Value
Field	0.5 T
Magnetic Length	50 cm
Gap height	34 mm
Good Field Region	±20mm

H-Type Dipole Magnet

Parameter	Value	
Field	0.72 T	
Magnetic Length	155 cm	(
Gap height	32 mm	
Good Field Region	±18mm	

C-Type Dipole Magnet

ILSF Prototype Magnet II

Parameter	Value
Field Gradient	23T/m
Magnetic Length	26 cm
Aperture radius	30 mm
Good Field Region	±18mm

ParameterValueSextupole Strength750T/m2Magnetic Length24 cmAperture radius36mmGood Field Region±21mm

Quadrupole Magnet

Sextupole Magnet

3rd ILSF School on Synchrotron Radiation and Its Applications

prototype H-Type dipole magnet

Main Objectives:

Magnet specifications

Parameter

Field-B₀

Gap

∆B/B

Gradient-B'

Good Field Region

Mechanical Length

Unit

Т

T/m

mm

mm

mm

- To compare the measurement results with design data.
- To develop fabrication procedures and techniques.

H. Prototype

0.5

34

±20

<1×10-4

500

 To find if the available low carbon steel is capable of using as magnetic steel.

Magnetic specifications of material

Chemical components of steel

С	Si	Mn	Р	S
0.03 %	0.01 %	0.24 %	0.011 %	0.016 %

40

50

Electrical and cooling design

17.32

Parameter	Design Value	Unit	
Total ampere-turns per coil	6900	А	
Operating current	101	Α	
Number of turn per coil	68	-	
Number of pancakes per coil	2	-	
Number of turn per pancake	34	-	
Conductor height	4.05	mm	
Conductor width	8.66	mm	
Cooling channel height	1.81	mm	
Cooling channel width	6.42	mm	
Copper area	23.45	mm ²	
Specific resistance	0.018	Ohm×mm²/m	
Resistance per coil	0.08	Ohm	
Current Density	4.33	A/mm ²	
Voltage drop per coil	7.79	V	
Power per coil	790.24	W	
Number of water circuit per coil	2	-	
Water temperature rise	8	C	
Cooling water speed	1.02	m/s	
Pressure drop per circuit	10	bar	
Reynolds number	1776	-	
74,69			

للفران المعنى المعن المعنى ال

Stacking fixture

Winding fixture

U

FABRICATION PROCEDURE OF MAGNET PREPARATION OF LAMINATIONS AND RESIN

Laser cutting of laminations

mixing the two components of resin

Washed and dried laminations

COATING AND STACKING OF LAMINATIONS

Coating procedure has been done by use of brush, and the packing factor is measured by measuring the length of packed laminations

CURING AND WELDING OF YOKE

U

COIL WINDING

In order to have two ends of the coil in the outer side the coil should wind from the middle for each layers and we need to have even layers

YOKE MACHINING

The machining procedure is done in a way to prevent delamination and to use the common reference point on both yokes to reach to defined tolerances

ASSEMBLING

 $\boldsymbol{\mathcal{O}}$

FINAL MAGNET

U

MAGNETIC MEASUREMENT

U

ILSF Prototype Quadrupole Magnet

Specification of Quadrupole Magnet

Magnet specifications

Parameter	Unit	H. Prototype
Gradient-B'	T/m	23
Aperture radius	mm	30
Good Field Region	mm	±18
Magnetic length	mm	260

Magnetic specifications of material

Chemical components of steel

C	Si	Mn	Р	S
0.01 %	1.7 %	0.24 %	0.037 %	-

ILSF-IPM, Sep. 2013

20

Electrical and cooling design

Parameter	Unit	value	Parameter	Unit	value
Mechanical	2	0222	Copper area	mm²	23.45
length		.0233			
Total Amp-	۸+	6553	Current density	A/mm ²	4.16
turns per coil					
Operating	Δ	96.4	Voltage drop	V	25
current				v	
Number of	60		Power per	KW	25
turns per coil	-	08	magnet	N V V	2.5
Number of			Number of		
pancakes per	-	No pancakes	water circuits	-	4
coil					
Conductor			Water		
height	mm	4.05	temperature	С	10.0°
licigitt			rise		
Conductor	mm	8.66	Cooling water	m/s	1.27
width			speed		
Cooling channel	mm	1 81	Pressure drop	har	67
height	ight 1.81			501	0.7
Cooling channel	mm	6.42	Reynolds	-	2441
width			number.		

3rd ILSF School on Synchrotron Radiation and Its Applications

PREPARATION OF LAMINATIONS

Laser cutting of laminations & wirecut

COIL WINDING

vacuum Presure impregnation (VPI)

Sextupole Magnet Prototype

100 110 120 130 140 150 160 170 180 190 200 210 220 230 I (A)

ILSF-IPM, Sep. 2013

700

500

90

Light Source Facility

240 250

Sextupole Design

ILSF-IPM, Sep. 2013

Electrical and cooling design

Parameter	Value
total Amp-turns per coil	4902 A
Operating current per coil	129 A
Number of turns per coil	38
Number of pancakes per coil	No pancakes
conductor dimensions	6.5 x 6.5 mm ²
Water cooling tube diameter	3.5 mm
Copper area	32.62 mm ²
Current density in copper	3.95 A/mm ²
Voltage drop per magnet	12.05 V
Power per magnet	1553.85 Watt
Number of water circuits per magnet	3
Water temperature rise	9.0° C
Cooling water speed	1.43 m/s
Pressure drop per coil	6.22 bar
Reynold No.(should be larger than 1160)	2500

Bending Magnet Prototype

Parameter	Unit	BE1
Bending radius	m	14.01
Deflecting angle	Degree	6.429
Field	Т	0.72
Gradient field	T/m	0
Gap Height	mm	32
Magnetic length	m	1.55
GFR	mm	±18

3rd ILSF School on Synchrotron Radiation and Its Applications

ILSF-IPM, Sep. 2013

1 Linac Bablien 2 Boarstef 3 Shonage Filio 4 Genricos Anse 5 Experimental Hall 6 Access Curridors