

3rd ILSF Advanced School on Synchrotron Radiation and Its Applications

September 14-16, 2013

Introduction to Synchrotron Radio Frequency System

Khorshid Sarhadi Head of ILSF RF Group

15 Sep. 2013

Outline

- Necessity of Radio Frequency system
- How the cavity works
- RF dependant parameters
- RF system components and functions
 - Cavity
 - High power RF Amplifier
 - Waveguide System
 - LLRF System
- RF System Design Procedure
- RF frequency selection
- Review of ILSF RF prototypes

bending

vacuum

chamber

Insertion device

beam line

Electric Field

Time-varying Field

focusing

injection

system

1. Necessity of Radio Frequency system

photon beam line

- Goal of synchrotron facility?
 - Producing X-ray Radiation for research
- How?
 - High energy Electrons passage through dipoles & ID^f cavity
 - Momentum changes
 - Energy losses
 - Photon emission
- How to provide the energy of the electrons?
 - Electric field or Magnetic field for acceleration?
 - Lorentz force $\vec{F} = e\vec{E} + e(\vec{v} \times \vec{B})$
 - Work rate $F \cdot \overline{v} = eE \cdot \overline{v} + e(\overline{v} \times \overline{B}) \cdot \overline{v}$ no work with magnetic field
 - DC or time varying electric field?
 - Maxwell equations: $\nabla \times \vec{B} \frac{1}{c^2} \frac{\partial}{\partial t} \vec{E} = \mu_0 \vec{J}$ $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} + \frac{\partial}{\partial t} \vec{B} = 0$ $\nabla \cdot \vec{E} = \mu_0 c^2 \rho$
 - In circular machine: $\nabla \times \vec{E} = -\frac{\partial}{\partial t}\vec{B}$ $\oint \vec{E} \cdot d\vec{s} = -\iint \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A} => DC$ acceleration is impossible, $\oint \vec{E} \cdot d\vec{s} = 0$
 - In non-circular machine: DC acceleration is possible but limited by break down

1. Necessity of Radio Frequency system (Cont.)

Which frequency the time-varying field oscillates with?

- Structure size, power source availability, etc.

- How to apply the field to the electrons?
 - Passing the electrons through a field resonator which is called cavity

2. How the cavity works

- Standing wave field
 - $E_z(r, z, t) = E_z(r, z)\sin(\omega t + \phi)$
- Electron energy gain on axis $\Delta E = e \int_{-g/2}^{g/2} E_z(0, z) \sin(\omega t + \phi) dz$ $\Delta E = e V_c \sin \phi \qquad V_c = \int_{-g/2}^{g/2} E_z(0, z) \cos \omega t dz$

- RF phase dependant
- How to adjust electron energy gain to compensate the energy loss?
 - Synch the particle arrival with RF phase
 - That's where synchrotron name comes from!

2. How the cavity works (Cont.)

- Synchronous phase
 - $-\phi_s$, RF phase which the ideal particle always sees passing the cavity

$$h = \frac{f_{RF}}{f_{rev}}$$
 harmonic number

- Energy gain=energy loss

$$\sin \varphi_s = \frac{U_o}{eV_{RF}} = \frac{V_r}{V_{RF}}$$

- Phase focusing principle
 - $\Delta P/P > 0 =>$ electron arrives later => gain less energy => closer to ideal energy
 - $\Delta P/P < 0 \Rightarrow$ electron arrives earlier \Rightarrow gain more energy \Rightarrow closer to ideal energy
- Necessity of cavity phase and amplitude adjustment with the beam

3. RF dependant parameters

Synchronous phase

$$\sin \varphi_s = \frac{U_o}{eV_{RF}} = \frac{V_r}{V_{RF}}$$

Synchronous frequency

$$f_s = f_{rf} \sqrt{\frac{-e\alpha V_c h \cos \varphi_s}{2\pi E_0}}$$

Over voltage factor

$$q = \frac{V_{RF}}{V_r} = \frac{1}{\sin \varphi_s}$$

Energy or momentum acceptance

$$\delta_{RF}^{2} = \frac{V_{r}F(q)}{\pi h\alpha E} = \frac{f_{rev}V_{r}F(q)}{\pi f_{RF}\alpha E} , F(q) = 2\left[\sqrt{q^{2}-1} - \cos^{-1}(\frac{1}{q})\right]$$

• Electron bunch length

$$\sigma_L = \frac{c\alpha\sigma_{\varepsilon}}{2\pi f_s E_0}$$

• Touscheck lifetime

- $\tau_{T} = \frac{8\pi \left\langle \sigma_{x} \sigma_{y} \right\rangle \sigma_{s}}{cr_{e}^{2} ND(\chi)} \gamma^{2} \delta_{m}^{3} \qquad \chi = \frac{1}{2\gamma^{2}} \frac{\left\langle \beta_{x} \right\rangle}{\varepsilon_{x}} \delta_{m}^{2}$
- Bremsstrahlung lifetime $\frac{1}{\tau_B(h)} = 3.23 \times 10^{-3} \left[\ln\left(\frac{1}{\delta_m}\right) \frac{5}{8}\right] \frac{P(nTorr)}{T(K)} \sum_i \ln\left(\frac{183}{z_i^{1/3}}\right) \cdot z_i(z_i + \varsigma) N_i r_{p_i},$

4. RF system components and functions

- Function of RF system:
 - Providing the energy to electrons for compensating the energy loss to continue photon radiation (in storage ring) or ramping to higher energies (in booster)
 - Establishing RF voltage to capture and focus the electrons into bunches
 - Controlling the beam parameters, such as bunch length, beam lifetime, etc.
 - Providing damping effects to the electron motions by synchrotron radiation and RF acceleration.
- RF System key components and their functions:
 - Cavity: establish RF voltage and transfer energy to electron beam
 - High power RF amplifier: generate the cavity required RF power
 - Waveguide system: transport the RF power to the cavity
 - LLRF system: perform cavity tuning, phase and amplitude stabilizing, suppress beam instabilities by RF and beam feedbacks, execute interlocks

4. RF system components and functions (cont.)

4. RF system components and functions (cont.)

- Simplest type: pillbox
- TM010 fundamental mode & best mode for acceleration

E-Field (peak)

4.61371e+007 U/m at 0

Mode 1

2.29257

Type Monitor

Maximum-3d

Frequency

- Higher order modes (HOM) also exist in a cavity and can be <u>excited by</u> <u>beam</u> when the beam current is high
 - Electric field has longitudinal variation => accelerate & decelerate the beam
 - Electric field in other direction => kick the beam transversely
 - Causes beam instabilities
- Each lattice has the instability thresholds which should be higher than 2EQ2Ecavity HOM impedances **7**thresh. 🕇 thresh. $N_c f_{\parallel,HOM} I_b \alpha \tau_{\varsigma}$ 10,000 10,000 ILSF Z______ ▲ 0 0 EU cavity ZHOM 1000 Δ 1,000 ELETTRA Z CESR Z_HOM 0 0 0 1ª Thus PEP-II (SPEAR3) Z_{II}HON Δ 100 ▲ KEK-PF(ASP version) Z^H_□ Z_I (kΩ) HOM damped cavities are desirable in high current storage rings (HOM shunt impedance \square , HOM power loss \square) ILSF Z____ EU Cavity ZHOM This is not an issue in boosters due to low beam current ELETTRA ZHOM Δ CESR Z^{HOM} 0.1 PEP-II (SPEAR3) Z^{HOM} ▲ KEK-PF(ASP version) Z^{HON} 0.01 2.5 05 0.5 1.5 1.5 3.5 4.5 Frequency (GHz) Frequency (GHz)

RF coupling loop

tuning plunger

coupling slots

TUNER

4-1. Cavity (cont.)

- Cavity design goal:
 - high gradient, high power, low loss (high fundamental shunt impedance), no/low HOM
- Cavity geometry evolution
 - Bell-shaped cavity => higher gradient, lower Higher order modes
 - Nose coned cavity => increase shunt impedance
 - Multi cell cavities
 - higher voltage, higher shunt impedance
 - Not HOM damped => suitable for boosters
 - Various HOM damping methods
 - Adding antennas
 - Adding absorbers in the tube
 - Waveguide dampers
 - HOM shifting by temperature tuning
 - Super conducting cavities
 - Low loss
 - Low HOM impedances

NC multi cell cavities

	In and spectrum	
. MIT		

Petra 5 cell at SSRF booster

	5 cell Petra	7 cell Petra
π mode frequency (MHz)	499.67	499.67
Shunt impedance (M Ω)	15	23
Nominal accelerating voltage (MV)	1.34	1.67
Maximal accelerating voltage (MV)	1.94	3
Total length (mm)	1800	2200
Outside diameter (mm)	445	448

HOM damped NC cavities

HOM damped NC cavities RF Input RF Window Fixed Tuner Coupling Network RF Cavity Vacuum Ion Pump Support Raft HOM loads Movable Tuner (Uppermost load removed for clarity) SIBBCPL **PEP-II**

Super conducting cavities

CESR cavity at SSRF storage ring

- **Cavity Components**
 - Coupler
 - Couple the input power from waveguide to cavity or pick up the cavity signal for monitoring
 - Types: loop & aperture
 - Power handling of the cavity is usually limited to the coupler structure

Ceramic cylinder with aperture coupling

- Tuner
 - Tuning and adjusting the cavity frequency ۲

Tuner

Cavity Components on PLS cavity Coupler

PPISScawityworkinglinasseshillingg

3rd ILSF School on Synchrotron Radiation and Its Applications

4-2. High power RF amplifier

- Function: generating the required RF power for the cavity
- Order of required power: few hundred kilowatts for storage ring
- High power Amplifiers Options:
 - Microwave tubes (Klystron, IOT (Inductive Output Tube), etc.)
 - Principle: reverse of Linac

4-2. High power RF amplifier (cont.)

- Function: generating the required RF power for the cavity
- Order of required power: few hundred kilowatts for storage ring
- High power Amplifiers Options:
 - Microwave tubes (Klystron, IOT (Inductive Output Tube), etc.)

3rd ILSF School on Synchrotron Radiation and Its Applications

4-2. High power RF amplifier (cont.)

- Function: generating the required RF power for the cavity
- Order of required power: few hundred kilowatts for storage ring
- High power Amplifiers Options:
 - Microwave tubes (Klystron, IOT (Inductive Output Tube), etc.)
 - Solid State Amplifiers
 - Principle: Combining the transistor amplifiers
 - Recently used in accelerators
 - First experience at Soleil.
 - Now in Brazil, Swiss, Taiwan ,SESAME.

4-2. High power RF amplifier (cont.)

Comparison

Microwave Tubes (Klystron, IOT,...) Solid State Amplifier

- More experienced technology
- Cheaper than SSA but Difficult and expensive maintenance
- Few existing manufacturers
- Radiate X rays
- Work in High Voltage which has safety problems

- New technology (under improvement, not commercially available)
- Highly modular
- Good experience at SOLEIL
- No X rays
- Easier and quicker maintenance(In principle, it is possible to replace a broken module without interrupting the amplifier operation)
- Absence of high biasing voltages
- Possibility of reduced power operation in case of failure (Graceful degradation)
- Stable gain with aging

4-3. Waveguide System

- Function: transmit the energy from amplifier to cavity
- Waveguide System components:
 - Circulator : prevents the power reflected from the cavity go back toward the amplifier and cause damage.
 - Dummy load: absorbs any reflection from the cavity (installed in the third port of the circulator)
 - Transmission Lines:
 - Straight lines to transport the RF signal on a straight path.
 - Bends to turn the wave direction 90 degrees in E-plane or H-plane.
 - Bellows to give flexibility to the waveguide system in case of temperature changes.
 - Waveguide-coaxial transitions to match the RF power in the waveguide to the coaxial line of the cavity coupler.
 - Bi-directional couplers to couple the forward and reflected power out for measurement.
 - Other components: phase shifter, magic Tee, RF switch (might be necessary in some systems)

4-3. Waveguide System (cont.)

Waveguide distribution at ALBA

4-3. Waveguide System (cont.)

Waveguide distribution at PLS-II

4-3. LLRF System

- LLRF: Low Level RF
- RF Control requirements
 - Amplitude and phase stability
 - Typically ± 0.5 degrees on phase, $\pm 1\%$ on amplitude, and ± 1 ppm
 - Cavity Tuning and beam loading compensation
 - Frequency loop is required
 - Suppression of beam instabilities

3rd ILSF School on Synchrotron Radiation and Its Applications

4-3. LLRF System

- Implementation options:
 - Fully Analogue
 - It directly uses cavity analog signal => very fast and relatively simple
 - Lack of flexibility => digital LLRF

Cavity

(b)

4-3. LLRF System (cont.)

Implementation options:

- Fully Analogue
- Semi-digital
 - Signal conditioning: analogue By physical components (amplifiers &combiners)
 - Relatively fast & accurate
 - Moderately complex

4-3. LLRF System (cont.)

Implementation options:

- Fully Analogue
- Semi-digital
- Fully digital
 - Signal conditioning: digital By digital processors (FPGA&DSP)
 - Higher delay
 - Higher flexibility

5. RF System Design Procedure

- Step 0: RF frequency selection
 - Effects and selection arguments will be discussed in this presentation
- Step 1: RF voltage calculation
 - Goal: providing the desirable
 - momentum acceptance (typically 3% in recent lattices)
 - Lifetime (around 6 hours for top-up operation)
 - Required data:
 - Lattice parameters
 - Beam power (beam current×total radiation loss)
- Step 2: Cavity selection or design
 - Calculate:
 - Shunt impedance
 - Maximum tolerating voltage (due to cooling)
 - Maximum handling power (duo to coupler window)
 - Other Considerations
 - Lattice instability threshold & HOMs
 - Available straight sections in the lattice & cavity dimension
 - Cost

3rd ILSF School on Synchrotron Radiation and Its Applications

6. RF System Design Procedure (cont.)

- Step 3: determination of number of cavities
- Step 4: cavity dissipation power calculation
- Step 5: cavity required RF power calculation
 - Beam power/N + dissipation power
- Step 6: Amplifier power calculation
 - Cavity power + waveguide system loss (usually 10%)
- Step 7: Other components detail designs
 - Selection of component design option
 - Detail design of component
 - Amplifier and its components
 - LLRF blocks
 - All waveguide components
- Step 8: Other issues
 - Beam cavity interaction
 - Beam loading effect & RF matching
 - Robinson instability & cures
 - Higher order mode instabilities & cures

$$V_{cav} = \frac{V_{RF}^2}{2N^2 R_s} + \frac{P_{beam}}{N}$$

6. RF frequency selection

- RF frequency at other synchrotrons
 - 500MHz was used in most of the 3rd generation synchrotron light sources
 - Availability of high power klystrons
 - Utilizing the experience of other light sources

Synchrotron	Energy	RF freq.
light source	(GeV)	(MHz)
ALBA	3	499.654
SOLEIL	2.75	352.2
SLS	2.4	500
TPS	3-3.3	499.654
NSLS-II	3	499.68
ESRF	6	352.2
CANDLE	3	499.654
PLS II	3	499.973
Diamond	3	500
ELETTRA	2.4	499.654
MAX IV	3	100
CLS	2.9	500
ANKA	2.5	499.66
Solaris	1.5	100
ASTRID 2	580	100

- Theoretical issues & practical concerns => selection (which may not necessarily be the universally optimum choice, but will be the optimum choice for the specific situation under consideration.)
- Effects of RF frequency
 - Machine and beam parameters
 - RF system parameters
 - RF system components
 - Cavity
 - LLRF
 - Amplifier

- Effects of RF frequency
 - Machine and beam parameters
 - RF voltage for 3% acceptance
 f♣ , required RF voltage ♣

• Touschek lifetime for a specific acceptance Not much dependent to frequency

• Effects of RF frequency

•

- Machine and beam parameters
 - Bunch length f↓, bunch lengthû 4.7mm @ 500MHz 15.6mm @ 100MHz
 - photon pulse width û
 16psec @ 500MHz
 52psec @ 100MHz

- Users need short pulse width for some time-resolved measurements. (can be also done in FEL laboratories.)
- But that time resolution is in the order of 10fsec-1psec which cannot be produced by any of cases and micro-bunching or beam slicing methods should be used in both cases.

Thus, it seems the change of RF frequency won't affect users side.

10

- Effects of RF frequency
 - Machine and beam parameters
 - Bunch length
 - $f {\ensuremath{\mathbb Q}} \ ,$ bunch length ${\ensuremath{\mathbb Q}} \$
 - Single bunch instability ↓
 - Less buckets
 - \Rightarrow higher threshold for beam instabilities
 - \Rightarrow Less HOMs must be damped

10

• Effects of RF frequency

- RF system parameters
 - Storage ring RF parameters for
 - Beam power=560kW
 - 3% acceptance

Parameters	500 MHz based on EU cavity	100 MHz based on MAX cavity
Total RF voltage (MV)	3.5	2
Harmonic number	496	92
RF Voltage/cavity (kV)	588	286
Number of cavities	6	7
Cavity Insertion length	0.5 m	0.5 m
Cavity Insertion height (m)	1.6	0.9
HOM damping	V	V
Shunt Impedance (MΩ)	3.3	1.6
RF power/cavity (kW)	146 = (52+94)	106= (26+80)
Amplifier Power (kW)	161	117
Transmission Line	Waveguide	Coaxial line
Total RF power (kW) including 10% transfer loss	966	819
SR tunnel space	3 short straight sections	4 short straight sections

- Effects of RF frequency
 - RF system parameters
 - Booster RF parameters
 - @ extraction for
 - Max beam current 10mA
 - 0.7% acceptance @ extraction

Parameters 500 MHz based on 7cell Petra		100 MHz based on MAX cavity
Total RF voltage (MV)	1.454	0.99
RF Voltage/cavity (kV)	1.454	247
Number of cavities	1	4
Cavity Insertion length	0.5 m	0.5 m
Shunt Impedance (M Ω)	23	1.6
RF power/cavity (kW)	54 = (46+8)	27= (19+8)
Amplifier Power (kW)	59	30
Transmission Line	Waveguide	Coaxial line
Total max RF power (kW) including 10% transfer loss	59	120

- Effects of RF frequency
 - RF system components (Availability / fabrication feasibility)
 - Cavity
 - More simple structure of MAX IV 100MHz cavity
 - Availability of dimension => easier to start the design
 - Possibility of fabrication in Iran û
 - » Wider tolerance range
 - » No Ferrite absorbers, vacuum brazing are required
 - » Electron beam welding instead of vacuum brazing
 - Better HOMs condition
 - » First cavity HOM @4f0 instead of 1.4f0
 - Higher instability thresholds @ 100MHz => less damping is required
 - Less power on cavity, easier to handle
 - Lower cost due to less complicated fabrication process and absence of ferrite absorbers
 - Only one option for procurement in 100MHz
 - LLRF system
 - No difference @ 100MHz and 500MHz
 - Only the up/down converters and RF filters must be changed.

- Effects of RF frequency
 - RF system components (Availability / fabrication feasibility)
 - Solid State Amplifier
 - Higher power @ module output (around 1kW)
 - Lower price in some module components but higher in combiners fabrications
 - No appropriate circulator is available at this frequency and power
 - » Dimension of the only one exists : 19cm*19cm*8cm .
 - » Without circulator, the combiners should have isolation which is complicated to develop. Needs R&D.
 - Bulky combiners => bulky towers. Current configuration cannot be used. New design idea is needed!
 - There is no implemented system with this power @ 100MHz. But 10kW amplifiers are available => combining existing amplifiers is a better solution.
 - Tetrode
 - Applications: Military and FM transmitter (power range of 10-20kW), particle accelerators (>60kW)
 - Procurement might be not easy/possible due to political situation.
 - High power circulator is needed which cannot be easily procured.
 - Similar system (100kW tetrode with 10kW SSA driver @ 100MHz) is available inYazd.

- So far at ILSF
 - 500MHz was selected as RF frequency
 - Being used in most of the 3rd generation synchrotron light sources
 - Utilizing the experience of other light sources
 - Availability of several HOM damped cavities (several options => lower cost)
 - R&D in solid state amplifier fabrication
 - Short pulses (bunch length) requirements for some users' applications
- But now 100MHz is under exploration due to some practical concerns in procurement and fabrication feasibility.

7. Review of ILSF RF prototypes

- Cavity
 - 500MHz AL cavity (designed, fabricated and tested)
 - Useful for Cavity low power test, LLRF test
 - Will be discussed in next presentation
 - 100MHz NC cavity (under design and investigation)

- Suitable Software for Cavity design:
 - 2D: Superfish
 - 3D: Electromagnetic Software:
 - CST (or Mafia)
 - HFSS

- **RF** Amplifier
 - Solid State Amplifier is selected as a power source
 - 3 amplifier modules with different transistors are designed, fabricated and tested

	BLF578	NXP Semiconductor	LDMOS, 10-500MHz, 1000W			
Transistor (UA)	MRFE6VP1K25HR6	Freescale	1.8-600MHz, 1000W			
	BLF888	NXP Semiconductor	470-860MHz, 600W			

Module 1: using BLF578 Gain=17.8dB Power =660w

Module 2: using MRFE6VP1K25HR6 Gain=18.4dB Power=700W

Module 3: using BLF888 Gain=20dB Power =450w

- Suitable Software for transistor amplifier design:
 - ADS (Agilent Advanced Design System)
 - AWR Microwave office

- **RF** Amplifier
 - Module under test

Cooling plate

8-Ways Power Splitte Ways 5kW Power Con Pabrication of 4kW amplifier based on BLF578 is under progress

ILSF-IPM, Sep. 2013

- **RF** Amplifier
 - 8-1 combiner

- Suitable Software for divider/combiner design

D

95mm

н 🌢

 S_{11}

-33 dB

D

 S_{1n}

0.04 dB

Isolation (MIN)

16 dB

Insertion Loss

• HFSS

161mm

• CST

Η

12mm

- **RF** Amplifier
 - 8-1 combiner

1st version of mechanical design

Fabricated combiner -Cooling blades are added for about 200W dissipated power

- Semi-digital prototype
 - IF frequency= 30MHz

- Suitable Software for RF control circuits:
 - ADS (Agilent Advanced Design System)
- Suitable Software for PCB preparation:
 - Protel or DXP

Analog Sections

Digital Sections

Software

LLRF	Transition of T	a core a mangino a r				-	-								x
Confi	g Al	Config	AO		Plot										
SampleRate	20e6	SampleRate	1e6		8-										
Sample/Trigger	50	Sample/Trigger	50		.6 -										
TriggerRepeat	inf	TriggerRepeat	inf												
TriggerType	Immediate 👻	TriggerType	Immediate 👻		.4 -										
Channel1		Channel1	VSin		2										
Channel2	Q	Channel2	VCos		-										
cquization			~			0.1	0.2	0.2	0.4	0.6	0.6	0.7	0.9	0.0	
V_{ref}	1	Start Scan	theta_(ref)	0	1	0.1	0.2	0.5	0.4	0.5	0.0	0.7	0.0	0.5	
F_{ref} 30)e6		F Track	0											
Auto 0	4) ⇒ pi	.0										
T					.6 -										
					.4 -										
					.2 -										
					0										_

- The primary tests show that the LLF system is able to stabilize the phase and amplitude of the resonant field of the cavity
- Currently, we are developing more sophisticated controlling algorithms and finalizing test and operation routine of the LLRF system

Backup Slides

Another reason for RF: breakdown limit

surface field, in vacuum,Cu surface, room temperature

ILSF-IPM, Sep. 2013

