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Chapter 1

INTRODUCTION

1.1 THE SOFT X-RAY AND EXTREME ULTRAVIOLET REGIONS
OF THE ELECTROMAGNETIC SPECTRUM

One of the last regions of the electromagnetic spectrum to be developed is that between ul-
traviolet and x-ray radiation, generally shown as a dark region in charts of the spectrum. It
is a region where there are a large number of atomic resonances, leading to absorption of
radiation in very short distances, typically measured in nanometers (nm) or micrometers (mi-
crons, µm), in all materials. This has historically inhibited the pursuit and exploration of the
region. On the other hand, these same resonances provide mechanisms for both elemental (C,
N, O, etc.) and chemical (Si, SiO2, TiSi2) identification, creating opportunities for advances
in both science and technology. Furthermore, because the wavelengths are relatively short,
it becomes possible both to see smaller structures as in microscopy, and to write smaller
patterns as in lithography. To exploit these opportunities requires advances in relevant tech-
nologies, for instance in materials science and nanofabrication. These in turn lead to new
scientific understandings, perhaps through surface science, chemistry, and physics, providing
feedback to the enabling technologies. Development of the extreme ultraviolet and soft x-ray
spectral regions is presently in a period of rapid growth and interchange among science and
technology.

Figure 1.1 shows that portion of the electromagnetic spectrum extending from the in-
frared to the x-ray region, with wavelengths across the top and photon energies along the
bottom. Major spectral regions shown are the infrared (IR), which we associate with molec-
ular resonances and heat; the visible region from red to violet, which we associate with color
and vision; the ultraviolet (UV), which we associate with sunburn and ionizing radiation; the
regions of extreme ultraviolet (EUV) and soft x-rays (SXR), which are the subject of this
book; and finally hard x-rays, which we associate with medical and dental x-rays and with the
scientific analysis of crystals, materials, and biological samples through the use of diffractive
and other techniques.

The extreme ultraviolet is taken here as extending from photon energies of about 30 eV
to about 250 eV, with corresponding wavelengths in vacuum extending from about 5 nm to
40 nm.∗ The soft x-ray region is taken as extending from about 250 eV ( just below the carbon

∗It is common to express photon energies in this spectral region in electron volts (eV) or thousands of
electron volts (keV), where the photon energy is h̄ω, h̄ is Planck’s constant divided by 2π , and ω = 2π f
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F IGURE 1.1 (see Colorplate I). The electromagnetic spectrum as it extends from the infrared (IR) to the
x-ray regions. Visible light is shown with red (650 nm), green (530 nm), and blue (470 nm)
wavelengths. At shorter wavelengths are ultraviolet (UV) radiation, extreme ultraviolet radiation
(EUV), soft x-rays (SXR), and hard x-rays. Shown for reference are the silicon L-absorption edge at
99.2 eV (12.5 nm wavelength), the carbon K-absorption edge at 284 eV (4.37 nm), the oxygen
K-absorption edge at 543 eV (2.28 nm), the silicon K-absorption edge at 1.84 keV (0.674 nm), the
copper K-absorption edge at 8.98 keV (0.138 nm), the copper Kα-emission line at 0.154 nm or 1.54 Å
(8.05 keV), and twice the Bohr radius at 2a0 = 1.06 Å, the diameter of the n = 1 orbit in Bohr’s model
of the hydrogen atom, but more generally a dimension within which resides most of the charge for all
atoms. Vertical dashed lines correspond to the transmission limits of common window materials used
to isolate vacuum. Shown are approximate transmission limits for common thicknesses of fused silica
(pure SiO2) at 200 nm, a thin film of silicon nitride (∼100 nm thick Si3N4) at 15 nm, and an 8 µm
thick beryllium foil at a wavelength of about 1 nm.

K-edge) to several keV, as shown in Figure 1.1. These spectral regions are characterized by the
presence of the primary atomic resonances and absorption edges of most low and intermediate
Z elements, where Z is the atomic number (the number of protons in the nucleus). The primary
atomic absorption edges† for selected elements are given in Table 1.1, along with 1/e absorption
lengths at photon energies of 100 eV and 1 keV. The K- and L-absorption edges, associated
with the removal of a core electron by photoabsorption from the most tightly bound atomic
states (orbitals of principal quantum numbers n = 1 and n = 2, respectively), are described
later in this chapter. The K-absorption edges of carbon (CK), oxygen, silicon, and copper are
shown in Figure 1.1, as is the L-absorption edge of silicon (SiL), just below 100 eV.

We see in Table 1.1 that many of these absorption edges lie in the combined soft-x-ray
and extreme ultraviolet spectral region. What differentiates these regions from neighboring
spectral regions is the high degree of absorption in all materials. At lower photon energies,
in the visible and ultraviolet, and at higher photon energies, in the hard x-ray region, many
materials become transparent and it is not necessary to utilize vacuum isolation techniques
in general. For example, Figure 1.1 shows dashed vertical lines at the locations of common
window materials that can hold vacuum over square centimeter areas while still transmitting
radiation in the indicated regions. In the UV, fused silica, a form of pure SiO2, is transmissive to
wavelengths as short as 200 nm, in millimeter thickness. For shorter wavelengths one quickly
enters the vacuum ultraviolet (VUV), where air and all materials are absorbing. Shown just

is the radian frequency. Wavelengths (λ) are commonly expressed in nanometers (1 nm = 10−9 m)
and angstroms (1 Å = 10−10 m). See Appendix A for the values of physical constants and conversion
factors.

†Standard reference data for this spectral region are given in Refs. 1–4.



Chapter 2

RADIATION AND SCATTERING
AT EUV AND SOFT

X-RAY WAVELENGTHS
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In this chapter basics of electromagnetic theory are reviewed. Beginning with Maxwell’s equa-
tions, the wave equation is developed and used to solve several problems of interest at short
wavelengths. Poynting’s theorem regarding the flow of electromagnetic energy is used to solve
the power radiated by an accelerated electron. The concept of a scattering cross-section is in-
troduced and applied to the scattering of radiation by free and bound electrons. A semiclassical
model is used in the latter case. Scattering by a multi-electron atom is described in terms of
a complex atomic scattering factor. Tabulated scattering factors, which are available in the
literature for use in special circumstances, are described.

2.1 MAXWELL’S EQUATIONS AND THE WAVE EQUATION

In this chapter we will consider radiation and scattering by accelerated charges. We will use
these results to study scattering cross-sections and interesting phenomena at visible, EUV, and
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Chapter 3

WAVE PROPAGATION AND
REFRACTIVE INDEX AT EUV
AND SOFT X-RAY
WAVELENGTHS
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In this chapter wave propagation in a medium of uniform atomic density is considered. Ex-
pressions for the induced motion of bound atomic electrons are used in combination with the
wave equation to obtain the complex refractive index for EUV and soft x-ray propagation.
This is then expressed in terms of the atomic scattering factors of Chapter 2. Phase velocity,
absorption, reflection, and refraction are then considered. Results such as the total external
reflection of x-rays at glancing incidence from the surface of a lossy material, the weak normal
incidence reflection of x-rays, Brewster’s angle, and Kramers–Kronig relations are obtained.
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F IGURE 3.5. Parallel components of the wave vectors.

Since k and k ′′ propagate in vacuum, they are real and equal in magnitude as observed in
Eq. (3.31); thus from (34b) we can write

sin φ = sin φ′′ (3.35a)

or

φ = φ′′ (3.35b)

which states that the angle of incidence equals the angle of reflection. Considering the refracted
wave k′, Eq. (3.34b) permits us to write

k sin φ = k ′ sin φ′ (3.36)

Since both waves must oscillate at the same frequency (ω), we can write, by using Eq. (3.15),
that

ω = kc = k ′c/n

or

k ′ = kn = ω

c
(1 − δ + iβ) (3.37)

indicating that the propagation vector in the medium is complex, representing both phase
variation and amplitude decay as the wave propagates, as seen previously in Eqs. (3.16) and
(3.17). Equation (3.36) can now be rewritten as Snell’s law:

sin φ′ = sin φ

n
(3.38)

which formally describes the refractive turning of a wave entering a uniform, isotropic medium
of complex refractive index n. The fact that n is complex implies that sin φ′ is also complex for
real incidence angle φ. Thus both the wavevector k ′ and the turning angle φ′, in the medium,
have real and imaginary components, giving a somewhat more complicated representation of
refraction and propagation.
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F IGURE 3.6. Glancing incidence radiation and total external reflection.

Snell’s law (3.38) is valid over a wide range of wavelengths and photon energies. It is
widely used in lens designs at visible wavelengths, and to describe such interesting phenomena
as total internal reflection of visible light within the denser medium at water–air and glass–air
interfaces. We will use Snell’s law here to describe the near-total reflection of short wavelength
radiation at glancing incidence to a material surface.

3.4 TOTAL EXTERNAL REFLECTION OF SOFT X-RAYS AND EUV RADIATION

For most angles of incidence the reflection coefficient for soft x-rays and extreme ultraviolet
radiation is very small, as we will see in a following section of this chapter. This is due to
the fact that the refractive index is very close to unity so that there is little change of field
amplitudes across the interface. However, there is an important exception for radiation incident
at a glancing angle to the material surface, far from the surface normal. We will see that in
this case, radiation of any polarization experiences near total reflection. This total external
reflection is widely used in experiments involving radiation transport, deflection, focusing, and
filtering. Like its visible light counterpart total internal reflection (commonly observed in fish
tanks and used for turning visible laser beams within glass prisms where the refractive index is
greater than unity), the x-ray effect can be understood in large measure on the basis of Snell’s
law, Eq. (3.38). Snell’s law indicates that visible light will be bent towards the surface normal
(φ′ < φ) when entering a medium of greater refractive index (n typically greater than 1.5 for
glass or water at visible wavelengths). For EUV and x-rays, however, with the real part of the
refractive index slightly less than unity, Snell’s law indicates that the radiation is refracted in
a direction slightly further from the surface normal. Inspection of Eq. (3.38) shows that for n
slightly less than unity, sin φ′ is slightly larger than sin φ. Thus for near-glancing incidence
(φ near π/2) the refraction angle φ′ can equal π/2, indicating that to first order the refracted
wave does not penetrate into the material, but rather propagates along the interface. In short
order we will investigate the dependence of these fields on the parameters of the problem: the
wavelength λ, incidence angle φ, and refractive index components δ and β. First, however,
we consider the simplified problem with β approaching zero, which permits us to understand
the basic phenomenon of total external reflection and quantify the critical angle with minimal
mathematical complexity. The general effect is illustrated in Figure 3.6.

Considering Snell’s law for a refractive index of n � 1 − δ, where for the moment we
assume that β approaches zero, one has

sin φ′ = sin φ

1 − δ
(3.39)

Thus the refracted wave is at an angle φ′, somewhat further from the surface normal than φ
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because of the 1 − δ factor. As φ approaches π/2 it is evident that sin φ′ approaches unity
somewhat faster. The limiting condition occurs at a critical angle of incidence, φ = φc, where
φ′ = π/2, so that sin φ′ = 1 and from Eq. (3.39)

sin φc = 1 − δ (3.40)

This is the condition for total external reflection; the incident x-rays do not penetrate the
medium, but rather propagate along the interface at an angle φ′ = π/2. The angle for which
this condition is just met is given by Eq. (3.40). Since δ 	 1 for x-rays, the phenomenon
occurs only for glancing angles where φ is near 90◦. Thus it is convenient to introduce the
complimentary angle θ , measured from the interface as shown in Figure 3.6, where

θ + φ = 90◦

The critical angle condition (3.40) then becomes

sin(90◦ − θc) = 1 − δ

or

cos θc = 1 − δ

Since δ 	 1 for x-rays, cos θc is near unity, θc is very small, and we may make the small angle
approximation

1 − θ2
c

2
+ · · · = 1 − δ

which has the solution

θc =
√

2δ (3.41)

as the critical angle for total external reflection of x-rays and extreme ultraviolet radiation, a
result first obtained by Compton6 in 1922.

Since the real part of the refractive index can be written as [Eq. (3.13a)]

δ = nareλ
2 f 0

1 (λ)

2π

we have, to first order,

θc =
√

2δ =
√

nareλ2 f 0
1 (λ)

π
(3.42a)

Because the atomic density na , in atoms per unit volume, varies only slowly among the natural
elements, the major functional dependencies of the critical angle are

θc ∝ λ
√

Z (3.42b)

where we have used the fact that to first order f 0
1 is approximated by Z , although as we

have seen f 0
1 is also a complicated function of wavelength (photon energy) for each element.



Chapter 4

MULTILAYER INTERFERENCE
COATINGS
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Multilayer interference coatings, often referred to as multilayer mirrors, are formed by deposit-
ing alternating layers of two materials of differing refractive index that form long-term stable
interfaces. Typically the two materials are of alternating high and low atomic number (Z ) in
order to maximize the difference in electron density. The coatings permit the achievement of
high normal incidence reflectivity, within a modest spectral bandwidth, at EUV wavelengths.
They also offer new opportunities for glancing incidence reflectivity at soft x-ray and x-ray
wavelengths. The coatings are largely amorphous (or to some degree polycrystalline) within
individual layers, and reflection conforms to Bragg’s law for a periodicity d equal to the
thickness of one bilayer pair, typically measured in tens of atomic monolayers. Multilayer
coatings have the great advantage of being adaptable to curved surfaces, enabling their use as
reflective optics in EUV and soft x-ray microscopes, telescopes, and other applications.

4.1 INTRODUCTION

High reflectivity at normal incidence∗ can be achieved at EUV, and to some extent soft x-ray,
wavelengths through the use of multilayer interference coatings, sometimes called reflection

∗k-vector perpendicular to the surface.
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Chapter 5

SYNCHROTRON RADIATION
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F IGURE 5.8. Illustration of narrow cone undulator radiation that is generated by electrons traversing a
periodic magnet structure.

plane. The general polarization properties of bending magnet radiation for arbitrary angles of
observations are discussed in Ref. 3.

5.3 CHARACTERISTICS OF UNDULATOR RADIATION

An electron traversing a periodic magnet structure8 of moderate field strength will undergo
a small amplitude oscillation and therefore radiate. If the electron’s angular excursions are
small compared to the natural radiation width, θe < 1/2γ , the device is referred to as an
undulator (see Figure 5.8). The resultant radiation is greatly reduced in wavelength, λ, from
that of the magnet period, λu . We will see shortly that Lorentz contraction and relativistic
Doppler shift lead to a reduction in the radiated wavelength by a factor of 2γ 2. As γ can
easily be several thousand, undulator periods measured in centimeters lead to observed x-ray
wavelengths measured in angstroms.

While discussing undulator radiation, we will find it convenient to consider the radiation
in several frames of reference. Many of the calculations will be done in the reference frame
moving with the electron. We will then transform the results to the rest frame of the laboratory
via Lorentz transformations (see Ref. 9 or Appendix F, Lorentz Space–Time Transformations).
The following is a brief introduction to undulator radiation. A more detailed discussion will
follow in subsequent sections.

In the frame moving with the electron, the electron “sees” a periodic magnet structure
moving toward it with a relativistically (Lorentz) contracted period, λ′, given by

λ′ = λu

γ
(5.9)

where γ ≡ 1/
√

(1 − v2/c2), v is the relative velocity, and c is the velocity of light in vacuum,
as discussed in Appendix F. Due to the periodic magnet, the electron experiences an oscillation
and consequently radiates. In the frame moving with the electron this problem is that of the
classical radiating dipole, a point charge oscillating with an amplitude much smaller than
the radiated wavelength. The frequency of this emitted radiation, in the reference frame of
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λ′

λ′ λxv

Note: Angle-dependent doppler shift

v << c v   c~<

F IGURE 5.9. Radiation from an oscillating charge moving at (a) a non-relativistic and (b) a relativistic
speed. Short wavelengths are observed because comparable speeds of the moving charge (v) and the
radiation (c) reduce the separation of succeeding phase fronts. Indeed, as v approaches c, the spatial
phase variations (λ) are dramatically compressed by many orders of magnitude. (Following J. Madey.)

the electron, is

f ′ = c

λ′ = cγ

λu

To the observer in the fixed laboratory reference frame, the radiation wavelength is further
reduced by Doppler shifting. The Doppler shift is dependent on the relative velocity and
therefore is dependent on the observation angle θ , as can be deduced from Figure 5.9. The
shortest wavelength is observed on axis. The relativistic form of the Doppler frequency
formula is [see Appendix F, Eq. (F.8b)]

f = f ′

γ (1 − β cos θ )
= c

λu(1 − β cos θ )
(5.10)

where β ≡ v/c and θ is the observation angle measured from the direction of motion.
Let us first analyze the observed frequency on axis. Here θ = 0, cos θ = 1, and

f = c

λu(1 − β)

As noted in Eq. (5.3), for β � 1 we have 1 − β � 1/2γ 2. Therefore, the observed radiation
frequency on axis is

f = 2γ 2c

λu

and the observed wavelength on axis is

λ = c

f
= λu

2γ 2
(5.11)

Note that the observed wavelength, λ, is relativistically contracted by a factor 2γ 2 from the
period of the undulator. Again using the ALS as an example, with a 1.9 GeV electron energy,
γ � 3700 [see Eq. (5.5)]; thus 2γ 2 � 2.8 × 107. If the undulator period is λu = 5.0 cm, the
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resultant on-axis radiation will be relativistically shifted to an observed wavelength of order

λ � 5.0cm

2.8 × 107
� 1.8 nm

Thus the periodic magnet generates radiation peaked in the soft x-ray region of the electro-
magnetic spectrum.

If we wish to consider Doppler shifts at small angles off axis (θ 	= 0), we can return to
Eq. (5.10) and use the small angle approximation. The Taylor expansion for small angles is
cos θ = 1 − θ2/2 + · · ·; therefore,

f =
c
λu

1 − β
(

1 − θ2

2 + · · ·
) =

c
λu

1 − β + βθ2

2 + · · ·
=

c
(1−β)λu

1 + βθ2

2(1−β)

Since β � 1 and by Eq. (3) 1 − β � 1/2γ 2, one has

f =
2γ 2c
λu

1 + 2γ 2θ2

2 − · · ·
= 2cγ 2

λu(1 + γ 2θ2)

In terms of the observed wavelength λ = c/ f , one has to first order

λ = λu

2γ 2
(1 + γ 2θ2) (5.12)

We again see the 2γ 2 contraction on axis, but now with the off-axis radiation having a wave-
length increased by a factor (1+γ 2θ2). Hence, to observe the narrow bandwidth characteristic
of this relativistic harmonic oscillator, it is necessary to select only near-axis radiation.

As we will see explicitly in a following section, the magnetically induced undulation
causes the electron to follow a somewhat longer pathlength as it traverses the undulator.
Thus, the mean axial velocity is reduced, resulting in a modified Doppler shift and therefore
somewhat longer wavelengths than indicated by Eq. (5.12), and a broader radiation cone as
well.

5.3.1 Undulator Radiation Pattern

As we saw in Chapter 2, Eqs. (2.25)–(2.33), an oscillating electron of charge −e undergoing
an acceleration a will radiate electromagnetic waves characterized by an electric field (also
see Leighton, Ref. 9).

E(r, t) = ea(t − r/c)

4πε0c2r
sin �

and an orthogonal magnetic field

H (r, t) = ea(t − r/c)

4πcr
sin �

where t − r/c is the retarded time (delayed arrival at distance r ), and � is the angle between
the direction of acceleration (a) and the propagation direction (k0). Because the electric
and magnetic fields are orthogonal, their cross product gives a Poynting vector S (power per
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a
sin2Θ

a

Θ

(a) (b)

F IGURE 5.10. Illustration of an oscillating charge and the resultant radiation pattern. Note that there is
no radiation in the direction of acceleration, giving the radiation pattern a doughnut-like appearance.

sin2Θ′
(a)

θ 1
2γ~

(b)
a′

Θ′

F IGURE 5.11 (see Colorplate VI). (a) Illustration of the radiation pattern of an oscillating electron in the
frame of reference moving with the average electron speed. (b) Illustration of the radiation pattern of a
highly relativistic electron as observed in the laboratory frame of reference. The shortest wavelengths
are observed on axis. (Following Hofmann.2)

unit area) of

S = E × H =
[

e2a2 sin2 �

16π2ε0c3r2

]
k0

The radiated power per unit solid angle is [Chapter 2, Eq. (2.34)]

d P

d�
= r2|S| = e2a2

16π2ε0c3
sin2 �

Hence, the radiation pattern has a toroidal sin2 � shape, because there is no radiation in the
acceleration direction (� = 0), as illustrated in Figure 5.10.

For an undulating electron, undergoing simple oscillations in its own reference frame
(γ ), one obtains the same radiation pattern. However, the radiation pattern as observed in
the laboratory frame is relativistically contracted into a narrow radiation cone (the so-called
searchlight effect) as shown in Figure 5.11(b). Considering the symmetry of the problem, it
is convenient to work with a polar coordinate system measured from the z-axis. For instance,
in the plane defined by the electron acceleration (a) and the z-axis, the factor sin2 �′ becomes
cos2 θ ′, θ ′ being the polar angle measured away from the z-axis in the primed coordinate
system. In this primed electron frame of reference the radiation pattern has a half-intensity
angle at cos2 θ ′ = 1

2 or θ ′ = 45◦. According to Eq. (5.1), this corresponds to an angle in the
unprimed laboratory (observer) frame of reference of θ � 1/2γ . Returning to the example
of a 1.9 GeV electron (γ � 3700), in this case traversing a periodic magnet structure, one
anticipates that radiated x-rays will largely be confined to a cone of half angle 140 µrad. As
we will see in the following paragraphs, further cone narrowing can be obtained in the case
of undulator radiation.
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F IGURE 5.12. (a) The radiation spectrum as seen in the frame of reference moving with the electron is
narrow with a relative spectral bandwidth of order 1/N , where N is the number of oscillation periods.
(b) In the laboratory frame of reference, the wavelengths are shorter, but the spectrum is broader due to
off-axis Doppler effects. (Following Hofmann.2)

5.3.2 The Central Radiation Cone

The spectrum of radiation in the two reference frames is shown in Figure 5.12(a) and (b).
Figure 5.12(a) shows the narrow spectral width in the electron frame, set by the harmonic
oscillation for a fixed number of periods N . This is essentially a frequency–time (Laplace)
transform.

For example, the ALS has undulators of 5.0 cm period, with a length of 89 periods, so
that one can expect �ω′/ω′ = �λ′/λ′ of order 0.01. Note, however, that upon transformation
to the laboratory frame of reference, off-axis Doppler effects will broaden this considerably.
Figure 5.12(b) illustrates the Doppler shifted spectrum that results when the sin2 � dipole
radiation pattern is transformed according to Eqs. (5.1) and (5.12).

Recall that we have determined the undulator equation (5.12) in the laboratory frame,
viz.,

λ � λu

2γ 2
(1 + γ 2θ2)

and have also noted that the radiation is primarily contained in a narrow cone of half angle
θ = 1/2γ . The corresponding spectral width within this cone can thus be estimated by taking
the difference of Eq. (5.12) for two angles. Taking the wavelength as λ on axis (θ = 0), and
λ + �λ off axis at angle θ , then taking ratios, one obtains

�λ

λ
� γ 2θ2 (5.13)

where Eq. (5.13) shows how the wavelength increases as one observes the radiation off axis.
Note that for radiation within the cone of half angle θ � 1/2γ the relative spectral bandwidth
given by Eq. (5.13) is 1

4 ; thus the cone of half-intensity half angle encloses a relative spectral
bandwidth of about 25%. Use of aperture spectral filtering is illustrated in Figure 5.13. Often,
further spectral narrowing is desired, for instance, when probing in the vicinity of sharp atomic
resonance features. In such cases, a monochromator of some type (see Chapter 8) is employed
that acts as a narrow bandpass filter. In the case of radiation from a single electron or a tightly
constrained bunch of electrons, modest spectral filtering (as narrow as 1/N ) can be obtained
with a simple small-angle selecting aperture (pinhole). In this limit, we will see that angular
width and spectral width are closely connected. The interrelationship is shown in Figure 5.14.

Further cone narrowing can be appreciated by considering the undulator equation for two
angular positions, one on axis and one at angle θ , as we did previously in Eq. (5.13). If one
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F IGURE 5.13. The spectrum of undulator radiation in the laboratory frame of reference before and after
selecting an angular cone near the axis. With a sufficiently small electron beam phase space
(size–angle product) this can provide a simple mechanism for monochromatization.
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F IGURE 5.14. Illustration of a grating monochromator as used to filter undulator radiation to a “natural”
spectral width 1/N , and the concomitant cone narrowing to 1/γ

√
N that occurs with a tightly

constrained electron beam.

sets the monochromator for a “natural” bandwidth �λ/λ, set by the number of oscillation
periods, N , then one obtains the condition

�λ

λ
= 1

N
(5.14)

which, when combined with Eq. (5.13), indicates that narrower bandwidth radiation occurs
in a concomitantly narrower “central” radiation cone of half width

θcen � 1

γ
√

N
(5.15)

This narrow undulator radiation cone implies an emission solid angle reduced by a factor
1/N . These factors become very important when considering brightness and coherence (see
Chapter 8).
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F IGURE 5.15. Electron motion in a periodic
magnetic field.

The above analysis is for a single electron. For these results to hold for an electron
beam with many electrons, it is necessary that all electrons in the bunch be contained within
an angular variance of less than 1/γ

√
N . This angular constraint on the electron beam is

referred to as the undulator condition. Again considering 1.9 GeV electrons, with γ � 3720
and N � 100, one expects the 1% bandwidth radiation to be confined within a cone of angular
half width θ � 35 µrad.

5.4 UNDULATOR RADIATION: CALCULATIONS OF RADIATED POWER,
BRIGHTNESS, AND HARMONICS

Having introduced the basic features of undulator radiation, we now wish to solve the problem
by considering the equations of motion for a highly relativistic electron traversing a periodic
magneticfield. In the laboratory frame, the electron experiences only the static, albeit periodic,
magnetic field for small K . Hence, the laboratory is a convenient reference frame for the
calculation. After calculating electron trajectories in the laboratory frame, we will transform
to the frame of reference moving with the average electron motion (γ ). Our next step will be
to calculate the radiated fields in the electron frame where we have simple harmonic motion
(dipole radiation). We will see a multiplicity of harmonics, nω, of this radiation. Finally,
we will transform the radiated fields to the laboratory frame. The approach follows that of
Hofmann.2

5.4.1 The Undulator Equation

The force equation for a charge in the presence of electric and magnetic fields can be written
in any frame of reference as

dp
dt

= q(E + v × B) (5.16)

where p = γ mv is the momentum, q is the charge, v is the velocity, and E and B are the
electric and magnetic fields, determined through Maxwell’s equations. The problem we are
considering is dominated by the applied dc magnetic field associated with a periodic magnet
structure (undulator), as illustrated in Figure 5.15. There are no applied electricfields. Further,
we consider the radiated electromagnetic fields due to the undulator radiation generated by
many electrons to be relatively weak in the sense that the radiated fields have a negligible
effect on the various electron motions. To this level of approximation, we take E � 0 in
Eq. (5.16). Note that this would not be the case in a sufficiently long undulator. In fact, the
effect of the radiated fields would lead to free electron laser (FEL) action.10, 11 With these
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approximations the momentum equation becomes

dp
dt

= −e(v × B)

For the undulator case with relatively weak radiated fields (pre-FEL action), we take the
approximations E � 0 and By = B0 cos(2π z/λu) plus a negligible radiation field. Addition-
ally, taking to first order v � vz , the vector components in the x-direction give

mγ
dvx

dt
= +evz By

mγ
dvx

dt
= e

dz

dt
· B0 cos

(
2π z

λu

)
(0 ≤ z ≤ Nλu)

Now we can solve for the transverse oscillation vx . This gives rise to the primary source of
undulator radiation. To first order, we will find vx as a function of axial position z. Continuing
the algebra,

mγ dvx = e dz B0 cos

(
2π z

λu

)

Integrating both sides gives

mγ vx = eB0
λu

2π

∫
cos

(
2π z

λu

)
· d

(
2π z

λu

)

or

mγ vx = eB0λu

2π
sin

(
2π z

λu

)
(5.17)

This is an exact solution of the simplified equation of motion, but note that z is not a linear
function of time. That is, vz is not constant, but rather involves oscillations itself. Hence,
terms of the sin(· · · sin) type will appear, giving rise to harmonics.

Define the non-dimensional magnetic strength for a periodic magnet parameter as12

K ≡ eB0λu

2πmc
(5.18a)

or, in convenient units,

K = 0.9337B0(T)λu(cm) (5.18b)

The electron’s transverse velocity can then be written as

vx = K c

γ
sin

(
2π z

λu

)
(5.19)

Note that the angle the electron motion makes with the z-axis is a sine function bounded
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F IGURE 5.16. Electron angular excursions are harmonic, with maximum excursion K/γ . For K < 1
the angular excursions are within the natural radiation cone (1/2γ ), leading to interesting interference
effects that are manifested in cone narrowing, higher spectral brightness, and in some cases partial
coherence. The case of small angular excursions (K < 1) is referred to as the undulator limit. For
K � 1 such interference effects are not possible. This limit (K � 1) is referred to as the wiggler
limit. The scales here are exaggerated in the x-direction for clarity of presentation.

by ±K/γ , i.e.,

tan θe = vx

vz
� K

γ
sin

(
2π z

λu

)
(5.20)

so that K is also referred to as the (magnetic) deflection parameter. Note that to good ap-
proximation we have taken vz � c. Thus the maximum excursion angle (see Figure 5.16)
is

|θe, max| � K

γ
(5.21)

This is the root of differences between undulator radiation and wiggler radiation. Recall
that the characteristic half angle for emission of radiation is θrad � 1/2γ . Thus, for magnet
strength characterized by K ≤ 1, the electron angular excursions lie within the radiation cone.
This is the undulator case where interesting interference effects can occur, narrow bandwidths
result, and narrower radiation cones are obtained.

In the strong field case, K � 1, we refer to wiggler radiation. In this case, interference
opportunities are lost because the radiation from various segments of an oscillation are widely
separated in angle and therefore do not overlap in space after some propagation distance.
Nonetheless, other valuable attributes appear. Primarily, wiggler radiation provides a 2N
increase in radiated power and a broad shift to higher photon energies. We will discuss both
cases (K < 1, K � 1) further.

Recall that Eq. (5.19) is not that of a simple time harmonic, because z = z(t) is only
approximately equal to ct . To see this explicitly, we recall that γ is constant in a magnetic
field; thus for motion in the x, z-plane (vy = 0),

γ ≡ 1√
1 − v2

c2

= 1√
1 − v2

x +v2
z

c2

Thus,

v2
z

c2
= 1 − 1

γ 2
− v2

x

c2
(5.22)
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Knowing vx from Eq. (5.19), we can solve for vz :

v2
z

c2
= 1 − 1

γ 2
− K 2

γ 2
sin2

(
2π z

λu

)

To first order in the small parameter K/γ ,

vz

c
= 1 − 1

2γ 2
− K 2

2γ 2
sin2

(
2π z

λu

)
(5.23a)

where sin2 kuz = 1
2 (1 − cos 2kuz), and thus

vz

c
= 1 − 1 + K 2/2

2γ 2
+ K 2

4γ 2
cos 2kuz (5.23b)

Hence, the axial velocity (z-direction) has a reduced average component and a component
oscillating at twice the magnet spatial frequency. By averaging over a single period, we can de-
termine the average axial velocity, which plays a major role in the relativistic transformations.
Defining an average quantity

v̄z ≡ L

T
= L∫ L

0 dz/vz

(5.24)

where vz is given in Eq. (5.23b) and where T is the time required for the electron to travel a
distance L = Nλu . Then

v̄z = c

[
1 − 1 + K 2/2

2γ 2

] [
L∫ L

0
dz

1+α cos 2ku z

]

where

α = K 2

4γ 2
[
1 − 1+K 2/2

2γ 2

]

Expanding the denominator of the integral to second order in the small parameter α, one
obtains

v̄z = c

[
1 − 1 + K 2/2

2γ 2

] (
1 − α2

2

)

where the α2 term is of order 1/γ 4 and thus can be ignored, so that the average axial velocity
at finite K is given by

v̄z

c
= 1 − 1 + K 2/2

2γ 2
(5.25)
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From this, we can define an effective axial value of the relativistic factor,

γ ∗ ≡ γ√
1 + K 2/2

(5.26)

where the asterisk (*) refers to the reduction of the relativistic contraction factor by an amount√
1 + K 2/2. Hence Eq. (5.25) can be rewritten as

v̄z

c
= 1 − 1

2γ ∗2
(5.27)

As a consequence, the observed wavelength in the laboratory frame of reference is modified
from that given in Eq. (5.12), now taking the form

λ = λu

2γ ∗2
(1 + γ ∗2θ2)

that is, the Lorentz contraction and relativistic Doppler shift now involve γ ∗ rather than γ .
Expanding γ ∗ according to Eq. (5.26), one has

λ = λu

2γ 2

(
1 + K 2

2

) (
1 + γ 2

1 + K 2/2
θ2

)

or

λ = λu

2γ 2

(
1 + K 2

2
+ γ 2θ2

)
(5.28)

where we recall that K ≡ eB0λu/2πmc. Equation (5.28) is the undulator equation, which
describes the generation of short (x-ray) wavelengths through the factor λu/2γ 2, magnetic
tuning through K 2/2, and off-axis wavelength variations through γ 2θ2. Note that wavelength
tuning through variations of K requires changing the magnet gap. This is more desirable
than γ -tuning, as it affects only the desired experimental station on a multi-undulator storage
ring (see Figure 5.5). In practical units the wavelength λ and corresponding photon energy
E = 2πh̄c/λ are given by

λ(nm) =
1.306λu(cm)

(
1 + K 2

2 + γ 2θ2
)

E2
e (GeV)

(5.29a)

and

E(keV) = 0.9496E2
e (GeV)

λu(cm)
(

1 + K 2

2 + γ 2θ2
) (5.29b)

where λu is to be given in centimeters and the electron energy Ee in GeV.
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F IGURE 5.17. Illustration of the first and second
harmonic motions of the electron.

5.4.2 Comments on Undulator Harmonics

In addition to modifying the observed wavelength of the fundamental [as given by Eq. (5.28)],
the effect of transverse oscillations introduces higher harmonics into the motion. We will see
that the harmonic amplitudes scale as K n , where n is the harmonic number. These higher
harmonics of the radiation will occur at frequencies nω1 and wavelengths λ1/n. Because
short wavelengths are difficult to generate, harmonics are of great interest, especially since
they are a natural consequence of the motion. Harmonics are frequently used to extend the
photon energy range of a given undulator or facility.

We begin by considering second harmonic motion. From Eq. (23b) – repeated below –
we have

vz

c
= 1 − 1 + K 2/2

2γ 2
+ K 2

4γ 2
cos

(
2 · 2π z

λu

)

This expression displays both the decreased axial velocity and an axial velocity modulation
at twice the fundamental frequency. This is referred to as a second harmonic of the motion
and is illustrated in Figure 5.17. If the first order (fundamental) motion leads to radiation at
frequency ω′

1 in the electron frame, then the axial harmonic will radiate at ω′
2 = 2ω′

1; hence,
it is called second harmonic radiation. Note that the magnitude of the second harmonic term
scales as K 2.

Note that the second harmonic oscillations of the electron are at right angles to the
fundamental oscillations. That is, the fundamental radiation results from oscillations in the
x-direction, while the second harmonic (and other even harmonics) result from oscillations
in the z-direction. As a result, the polarization is different. Additionally, when transformed
to the laboratory frame, the angular distributions will be different. Figure 5.18 illustrates the
radiation patterns of the fundamental and second harmonics.

If we further analyze details of the electron motion, we will find that for larger K -values,
K ≥ 1, additional harmonics will appear due to the continued mixing of harmonic motions.
As K increases, this mixing will eventually lead to a strongly non-sinusoidal wiggler limit.
In all cases, the observed wavelengths will be governed by an extension of the undulator
equation:

λn = λu

2γ 2n

(
1 + K 2

2
+ γ 2θ2

)
(5.30)
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F IGURE 5.18. (a) Illustration of the figure eight electron motion in the frame of reference moving with
the average electron velocity, and the resultant radiation patterns at the fundamental and second
harmonic frequencies in both (b) the frame of reference moving with the electron and (c) the laboratory
frame of reference.

Due to the increased number of cycles, the relative spectral bandwidth is also improved,† viz.,(
�λ

λ

)
n

= 1

nN
(5.31)

where n is the harmonic number and N is the number of magnetic periods.
From Figure 5.18, we see that the even harmonics radiate a pattern that peaks off axis

and has zero intensity on axis. (Note that within a full electron bunch, this will be modified
due to random individual motions slightly off axis, i.e., to finite phase space effects.) As a
consequence, the even harmonics tend to be relatively weak on axis and, upon transformation
to the laboratory frame, radiate into a hollow cone of radiation. We will see later that this
cone has less interesting coherence and brightness properties. On the other hand, the odd
harmonics (n =1, 3, 5, . . . ) radiate on axis with a narrow spectrum and into a narrow forward
cone. Hence, they are quite interesting as sources of high brightness and partially coherent
x-rays. We will return to this subject in Section 5.5.

5.4.3 Power Radiated in the Central Radiation Cone

The undulator equation (5.28) tells us the wavelength of radiation as a function of magnet
period λu , magnet deflection parameter K , electron energy γ (in rest energy units), and polar
angle of observation θ . Now we would like to calculate the amount of power radiated. A
natural and interesting choice is to calculate the power radiated into the central radiation
cone, of half angle θcen, which we can identify with a relative spectral bandwidth λ/�λ �
N , where N is the number of magnetic periods and thus the number of oscillations the
electron executes in traversing the undulator. This has a natural appeal, common to our
experience with other physical phenomena involving oscillators, gratings, etc., which we
embody mathematically in our time–frequency and space–angle transformations. The choice
of a central radiation cone containing the 1/N relative spectral bandwidth is also interesting
because applications of undulator radiation generally involve the use of narrow bandwidth,
quasi-monochromatic radiation, and the 1/N bandwidth is as small‡ as one can obtain without
use of a monochromator.

†In practice this narrowed spectral bandwidth is limited to the first few harmonics due to electron energy
spread (�γ ) in a many-electron beam. Typically �γ/γ is of order 10−3 in a modern storage ring.

‡In fact the 1/N value is idealistic in that in practice one utilizes radiation from a multi-electron bunch
for which there is an angular divergence due to the slightly varying electron trajectories. In specific
cases considered later in this chapter, this typically contributes an additional broadening to the relative
spectral bandwidth.
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In Section 5.3.3 we used a simplified version of the undulator equation to introduce the
concept of a central radiation cone, finding that for a bandwidth 1/N the cone half angle is
1/γ

√
N . Having reconsidered electron motion in an undulator of finite K (Section 5.4.1), we

can now follow the same arguments using the corrected undulator equation (5.28), viz.,

λ = λu

2γ 2

(
1 + K 2

2
+ γ 2θ2

)

Writing this equation twice, once for a wavelength λ0 corresponding to θ = 0, and once
for an off-axis angle θcen such that it encompasses a full bandwidth �λ, subtracting the two
equations and normalizing (as was done in Section 5.3.2, but now for finite K ), one obtains a
corrected formula for the central radiation cone

θcen = 1

γ ∗√N
=

√
1 + K 2/2

γ
√

N
(5.32)

of a single electron, containing a relative spectral bandwidth �λ/λ = 1/N , where γ ∗ =
γ /

√
1 + K 2/2, as defined earlier in Eq. (5.26). Thus for finite K there are not only longer

wavelengths at each angle, but also an enlargement of the central radiation cone. We can
trace both effects to the reduced average axial velocity of the electron for finite K , and thus
to reduced effects of the angle dependent relativistic Doppler shift. A further discussion of
spectral bandwidth is presented in Section 5.4.4.

Our task now is to calculate the power radiated within the central cone, at the fundamental
frequency only. In later sections we will calculate other details, including the total power
radiated. Our approach will be to use our knowledge of classical dipole radiation, as considered
earlier in Chapter 2. We might ask how this can be done in a situation involving highly
relativistic motion. The technique is to transfer the calculation to the frame of reference
moving with the average electron velocity. In this frame of reference the electron motion is
non-relativistic, at least for modest K , and the oscillation amplitude is small compared to the
wavelength (in the frame of reference in which the calculation is made), as it should be for the
dipole approximation to be valid. Having the desired power calculations, the results are then
Lorentz transformed back to the laboratory (observer) frame of reference using straightforward
but relativistically correct angular relationships given in Appendix F. This procedure gives
us maximum leverage on the use of classical radiation results, and provides very valuable
insights to the most important properties of undulator radiation. The process is outlined in
Table 5.4.

Following the procedure outlined in Table 5.4, the electron velocity in the laboratory
frame of reference has been derived, from Newton’s second law of motion, as Eq. (5.19),

vx = K c

γ
sin

2π z

λu

which we can write as

vx = K c

γ
sin kuz

To obtain the acceleration we need vx as a function of time. To first order we assume that
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TABLE 5.4. An outline of the procedure for calculating power radiated by relativistic electrons traversing a
periodic undulator. Electron motion is determined in the laboratory frame of reference. A Lorentz
transformation to the frame of reference moving with the average electron velocity permits the use of
classical dipole radiation (Chapter 2), as the electron motion is non-relativistic in this frame. The dipole
radiation results are then Lorentz transformed back to the laboratory frame of reference.

e−

γ*
e−

z

N periods

x′

z′

Lorentz transformation

Lorentz
transformation

Θ′
θ′

sin2Θ′

= Nλ′
∆λ′

λu

λu

x

z= N

θcen =

λ
∆λ

1
γ *  N

′ =
λu

γ*

Determine x, z, t motion:

Ne uncorrelated electrons:

Ne = IL /ec, L = Nλu

x, z, t laboratory frame of reference x′, z′, t′ frame of reference moving with the
average velocity of the electron

Dipole radiation:

=

x′, z′, t′ motion
a′(t′) acceleration

= –e (E + v × B)

mγ       = e B0 cos

vx(t); ax(t) = . . .

vz(t); az(t) = . . .

dp
dt
~

dvx

dt
dz
dt

2πz
λu

dP′
dΩ′

= 8γ*2dP

dΩ

=

∆ Ωcen = π θ 2   = π /γ*2 N

Pcen = 

dP

dΩ

dP′
dΩ′

= (1–sin2 θ′ cos2 φ′) cos2 ω′ut′
dP′
dΩ′ ⎧⎩

⎧⎩

K2

1 + K2/2

K ≤ 1
θ ≤ θcen

⎫
⎭2 3

2 2

Pcen = K2

1 + K2/2 2

2

⎬

cen

e2 c

u

u
N

K2

1 + K2/2

e I

u

e a

c

e c

u

K2

1 + K2/2

e c

 

⎧⎩

⎧⎩

⎧⎩

⎧⎩

⎧⎩

⎧⎩

z � v̄z t = β∗ct , where v̄z is the average electron velocity in the z-direction and β∗ is very
close to unity. The velocity can then be written as

vx � K c

γ
sin kuβ

∗ct = K c

γ
sin ωut
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Chapter 7

EXTREME ULTRAVIOLET AND
SOFT X-RAY LASERS
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Lasing at short wavelengths in the EUV and soft x-ray regions of the spectrum is achieved in
hot dense plasmas. Temperatures of several hundred electron volts to above 1 keV are required
to collisionally excite atoms (ions) to the required energy levels. As these are well above the
binding energies of outer electrons, the atoms are necessarily ionized to a high degree. Upper
state lifetimes are typically measured in picoseconds, so that energy delivery (pumping) must
be fast. As a result high power infrared, visible, and ultraviolet lasers are generally employed
to create and heat the plasma, although in some cases fast electrical discharges are employed.
Population inversion is generally accomplished through selective depopulation, rather than
selective population. High gain lasing requires a high density of excited state ions, thus mandat-
ing a high density plasma. Preferred electron configurations are hydrogen-like (single electron,
nuclear charge +Ze), neon-like (10 electrons), and nickel-like (28 electrons) ions, which tend
to have a large fraction of the plasma ions in a desired ionization state. The short lifetime of hot
dense plasmas limits the effectiveness of cavity end mirrors, so that in general these are high
gain single pass lasers, albeit with some exceptions. Lacking multipass mode control, short
wavelength lasers typically are far from diffraction limited. Temporal coherence lengths, set
largely by ion Doppler line broadening, are typically 104 waves. The pumping power necessary
to produce short wavelength lasers scales as 1/λ4. Recent high gain experiments demonstrate
a capability for saturated lasing throughout much of this spectral region.
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Whereas spatially and temporally coherent radiation is plentiful at visible wavelengths due to
the availability of lasers, it is just becoming available at shorter wavelengths. In this chapter we
review the concepts of spatial and temporal coherence, some applications that require radiation
with these properties, and methods to generate spatially and spectrally filtered radiation at
extreme ultraviolet, soft x-ray, and x-ray wavelengths.

8.1 CONCEPTS OF SPATIAL AND TEMPORAL COHERENCE

The ability to focus radiation to the smallest possible spot size, to propagate it great distances
with minimal divergence, to encode wavefronts, and in general to form interference patterns,
requires well-defined phase and amplitude variations of the fields throughout the regions
of interest. In general, simple phase distributions approaching those of plane or spherical
waves are of greatest interest in those applications. Real laboratory sources, especially at very
short wavelengths, generally radiate fields with more complex phase relationships that are
well defined over only limited spatial and temporal scales. This brings us to the subject of
coherence, its technical definition, and various convenient measures.

Coherence in our daily lives refers to a systematic connection or logical relationship
between events, actions, or policies. In physics the word implies similar relationships among
the complex field amplitudes used to describe electromagnetic radiation. Mathematically, one
utilizes a mutual coherence function, �, as a measure of the degree to which the electric field
at one point in space can be predicted, if known at some other point, as a function of their
separation in space and time1, 2:

�12(τ ) ≡ 〈E1(t + τ )E∗
2 (t)〉 (8.1)

where in this scalar form E1 and E2 are the electric fields at points 1 and 2, and τ is the time
delay. The angular brackets denote an expectation value, or a time average of the indicated
product. It is often convenient to introduce a normalized complex degree of coherence, γ12,
again in scalar form, as

γ12(τ ) = �12(τ )√
〈|E1|2〉

√
〈|E2|2〉

(8.2)

where the normalizing factors in the denominator are clearly related to the local intensities at
the respective points, as was discussed in Chapter 2, Section 2.3. Thus, for example, in the
case of a uniform plane wave, of very well-defined frequency, if the electric field is known
at any given space–time point, it can be predicted everywhere else with certainty. As we
quantify this later for real physical systems, we will consider this uniform plane wave as
coherent radiation, meaning that |γ | = 1 everywhere. The counterexample would be one in
which there were a large number of atoms moving randomly and radiating independently, at
various frequencies, so that fields at the two separated points have almost no relationship. In
this case the resultant degree of coherence, µ, approaches zero, and the fields are considered
incoherent.

One could write similar functions to describe amplitude and phase correlations in other
physical systems. For a well-behaved water wave, for instance, one would expect the surface
amplitude to be predictable over great distances, so that |γ | would be near unity, implying a
high degree of coherence, over much of the observed field. On the other hand, the introduction
of randomly thrown pebbles would create a jumble of uncorrelated disturbances, so that |γ |
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θd

(a) (b)λ λ, ∆λ

F IGURE 8.1. (a) Fully coherent radiation from a point source oscillator, which oscillates for all time.
Note the circular or spherical nature of the outgoing waves. (b) Partially coherent radiation from a
source of finite size, emission angle, and duration. Note that the outgoing radiation only approximates
circular or spherical waves.

would approach zero in the immediate vicinity, leading us to conclude that the fields in this
vicinity were largely incoherent.

To introduce the concept of a coherence region, we consider first the rather visual example
of soldiers marching across a field. The coherent limit corresponds to all the soldiers in perfect
step. In the presence of a strong wind, however, some soldiers might not hear the leader calling
the cadence. In this case those soldiers close enough to hear would remain in step, while those
further away would become out of step – so there would be a region of coherence near
the leader. The distance over which there is a reasonable expectation that the soldiers were
marching in step could be called a “coherence length.” Note that the coherence length need
not be the same in all directions, in this case being dependent on wind direction. The complete
absence of cadence would result in uncorrelated stepping, a state of incoherence where |γ |
goes to zero for the smallest separations, and where the coherence length is essentially zero.
In the following paragraphs we will attempt to provide measures of the distances over which
electromagnetic fields can be expected to be well correlated, and thus useful for interference
experiments as discussed in the first paragraph of this chapter.

In the theoretical limit of a point source oscillating at a single frequency for all time,
from minus infinity to plus infinity, the radiated field quantities would be perfectly correlated
everywhere. That is, if one knew the electric field amplitude and phase at a given point and
time, one would know these quantities at all points and for all time. In this limiting case
the radiation field is said to be coherent. Real physical sources, however, are made up of
spatially distributed radiators that emit with a finite spectral bandwidth for a finite period of
time. Consequently, well-defined phase relationships between field amplitudes are in practice
restricted to a finite region of coherence.

Real sources are neither fully coherent nor fully incoherent, but rather are partially
coherent.1 In Figure 8.1(a) the point source radiates fields that are perfectly correlated,
and thus coherently related everywhere. In Figure 8.1(b) a source of finite size and spec-
tral bandwidth, restricted to radiate over a limited angular extent, generates fields with strong
phase and amplitude correlation over only a limited extent. This brings us again to notions
of “regions of coherence” and “coherence time”: that is, spatial and temporal measures over
which the fields are well correlated. In cases where there is a well-defined direction of propa-
gation, it is convenient to decompose the region of coherence into orthogonal components, one
in the direction of propagation and one transverse to it, as illustrated in Figure 8.2. Throughout
the remainder of this chapter we will confine ourselves to the subject of partially coherent
radiation in which there is a relatively well-defined direction of energy transport.

In the direction of propagation it is common to introduce a longitudinal, or temporal,
coherence length lcoh over which phase relationships are maintained. For a source of bandwidth
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F IGURE 8.2. Transverse and longitudinal coherence.
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F IGURE 8.3. (a) Spectral bandwidth and (b) coherence length: destructive interference due to finite
spectral bandwidth for radiation of wavelength λ and spectral bandwidth �λ.

�λ, one can define a coherence length

lcoh = λ2

2 �λ
(8.3)

where �λ is the spectral width, as discussed by several authors.2, 3 The relationship between
longitudinal coherence length (e.g., in the direction of propagation) and spectral bandwidth is
illustrated in Figure 8.3. Here the coherence length is taken as that distance that results in two
waves, of wavelength difference just equal to the bandwidth �λ, becoming 180◦ out of phase.
Over such a distance one would expect the waves emanating from a source of continuous
spectral width to become largely uncorrelated, and thus not contribute significantly to a well-
defined interference pattern. Equation (8.3) follows from Figure 8.3 on writing l coh = Nλ for
the first wave and l coh = (N − 1

2 )(λ + �λ) for the spectrally shifted wave, which executes
one-half less oscillation (one-half fewer wavelengths) to travel the same distance, and then
equating the two to solve for the “number of waves of coherence,” N = λ/(2 �λ). Equa-
tion (8.3) then follows on multiplying N by the wavelength, giving the coherence length for
which radiation of continuous bandwidth �λ becomes substantially dephased. The resultant
numerical factor of 1

2 appearing in Eq. (8.3) is somewhat arbitrary as obtained here, as it
depends on the criteria selected. The numerical factors’ dependence on spectral line shape
is discussed by Goodman2 in his Section 5.1.3. In the experimental formation of interfer-
ence (fringe) patterns by amplitude dissection (e.g., using a beamsplitter) and recombination,
as in interferometry1 and holography,3 it is essential that differences in propagation length
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be less than the coherence length; otherwise high contrast interference patterns will not be
obtained.

Transverse, or spatial, coherence is related to the finite source size and the characteristic
emission (or observation) angle of the radiation. In this case one is interested in phase cor-
relation in planes orthogonal to the direction of propagation. It is instructive to consider the
relationship of spatial coherence to spherical waves in the limit of phase being perfectly corre-
lated everywhere. Clearly this limit corresponds to concentric spherical waves with constant
phase across every spherical surface and with phase maxima separated by a wavelength in
the outward propagation direction. Although somewhat restrictive, we consider the spherical
case because it is common to our experience and yields a clear physical insight. Again we
consider only a small portion of the spherical wave propagating in a relatively well-defined
direction. With some appropriate bandwidth, and thus finite coherence length, such a spheri-
cal wave could provide a reference wave for encoding complex wavefronts, as in holography.
Near-spherical waves can be focused to a spot size approaching finite wavelength limits, as in
a scanning microscope, or collimated to travel with minimal divergence for use in precision
diffraction experiments.

Full spatial coherence, the situation in which phase is perfectly correlated at all points
transverse to the propagation direction, can be achieved with a spherical wavefront, which we
associate with a point source. We might then ask, “How small is a point source?” or more
accurately, “How small must the source be to produce wavefronts suitable for our purpose?”
and “How small must our undulator electron beam or x-ray laser aperture appear to be in
order to provide spatially coherent radiation?” We can obtain a simple estimate based on
Heisenberg’s uncertainty principle

�x · �p ≥ h̄/2 (8.4)

Here �x is the uncertainty in position and �p the uncertainty in momentum, both being
single-sided rms (1/

√
e) measures of Gaussian probability distributions.4 Using Eq. (8.4), we

can determine the smallest source size d resolvable with finite wavelength λ and observation
half angle θ . For photons the momentum is h̄k, where the scalar wavenumber |k| is 2π/λ. If
the relative spectral bandwidth �λ/λ, which is equal to �k/k, is small, then the uncertainty
in momentum, �p = h̄ �k, is due largely to the uncertainty in direction θ , so that for small
angles |�p| = h̄k �θ . Substituting into the uncertainty relation (8.4)

�x · h̄k �θ ≥ h̄/2

and noting that k = 2π/λ, one has

�x · �θ ≥ λ/4π

Identifying the source diameter as d = 2 �x and the divergence half angle θ with the
uncertainty �θ , as illustrated in Figure 8.4, we obtain the limiting relationship5−7

d · θ = λ/2π (8.5)

which determines the smallest source size we can discern; that is, within the constraints of
physical law we would not be able to tell if our “point” source were any smaller. We recall
from Eq. (8.4) that this relationship is for Gaussian rms quantities (d and θ ). For non-rms
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F IGURE 8.4. Spherical wavefronts and spatially coherent radiation are approached when the source size
and far-field divergence angle are related to wavelength as indicated in Eq. (8.5).
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F IGURE 8.5. Propagation of a Gaussian beam.

measures the numerical factor (1/2π ) will be different.∗ Radiation satisfying the equality
(8.5) is said to be diffraction limited – that is, limited by the finite wavelength and observation
angle (or numerical aperture θ ). To generate a spatially coherent spherical wave we must
develop a source – at x-ray wavelengths – that approaches the limiting values set by Eq. (8.5).
For symmetry purposes some researchers prefer to introduce a “spatial coherence length,”
rather than θ . This would clearly depend on distance z from the source; e.g., if one defines
ltransverse ≡ zθ , one has

l transverse = zλ

2πd

In this text, we will confine ourselves to the use of the space–angle relationship given in
Eq. (8.5).

For comparison, a laser radiating in a single transverse mode TEM00 satisfies this same
condition when the waist diameter d and far-field divergence half angle θ are written in terms
of rms quantities, as illustrated in Figure 8.5. For a spherical wave propagating with a Gaussian
intensity distribution, I/I0 = exp(−r2/2r0), where r0 is the 1/

√
e waist radius at the origin

(z = 0), the intensity distribution grows with a 1/
√

e radius given by5, 6

r (z) = r0

√
1 +

(
λz

4πr2
0

)2

Thus in the far field, where z � 4πr2
0 /λ, the 1/

√
e divergence half angle is

θ ≡ r (z)

z
= λ

4πr0

∗For Gaussian intensity distributions measured in terms of FWHM diameter (d) and FWHM angle (2θ ),
the equivalent relation is (d · 2θ )FWHM = 2 ln 2

π
λ = 0.441λ, or approximately λ/2.
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With a waist diameter d = 2r0, this TEM00 laser cavity mode exhibits a waist diameter times
far-field divergence half angle (both in terms of 1/

√
e measures) given by

d · θ = λ

2π

as found previously in Eq. (8.5) on the basis of Heisenberg’s uncertainty principle.
In summary, we now have two convenient relationships by which to gauge the coher-

ence properties of a radiation field for the purpose of conducting phase sensitive interference
experiments, Eqs. (8.3) and (8.5):

lcoh = λ2

2 �λ
(temporal or longitudinal coherence)

and

d · θ = λ/2π (spatial or transverse coherence)

In the next section we will use these measures to determine what fraction of radiated power,
or photon flux, from a given source is useful for experiments requiring spatially or temporally
coherent radiation within required bounds.

8.2 EXAMPLES OF EXPERIMENTS THAT REQUIRE COHERENCE

As discussed in the preceding section, radiation from a real physical source cannot be truly
coherent, because of both the finite spectral width and the finite physical extent. Nonetheless,
in many experiments we require a high degree of coherence across only a limited region, and
as a consequence may wish to employ spatial and temporal filtering techniques. For example,
if one wishes to focus radiation to the smallest possible spot size, at a given wavelength
(λ) and lens numerical aperture, the lens must be coherently illuminated, as illustrated in
Figure 8.6.

Such focusing is essential for the achievement of highest spatial resolution in a scanning
x-ray microscope, a topic we take up in Chapter 9. The advantage of scanning x-ray microscopy
is that it is capable of achieving significantly smaller focal spots than are achievable with visible
or ultraviolet radiation, and thus it is becoming a widely used tool for the study of material
surfaces, chemical fibers, and biological materials. For the case of the smallest possible focal
spot size, the lens forms a wavelength-limited image of the source. This process is referred
to as diffraction limited focusing because the intensity distribution in the focal region is
limited by the finite wavelength and lens numerical aperture, rather than the actual source
size. This is, of course, a limiting case. For a larger source size the image would simply be
demagnified by the ratio M = q/p, where q is the source to lens distance, p is the lens to
image distance, and these are related to the lens focal length f by the reciprocal thin lens
equation 1/ f = 1/p + 1/q. In the diffraction limited case, however, the source size d is
sufficiently small that the radiation intercepted by the lens (see θ in Figure 8.6) approximately
satisfies the spatial coherence condition set by Eq. (8.5), or its equivalent. In this case the focal
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F IGURE 8.6. Diffraction limited focusing – that is, limited only by the finite wavelength and lens
numerical aperture (NA) – requires a perfect lens and coherent illumination. The refractive lens shown
is for illustration only. At x-ray wavelengths this would require diffractive or reflective optics, such as a
Fresnel zone plate or a multilayer coated spherical mirror. In a scanning microscope a sample would be
placed at the focus and raster scanned with a suitable translation stage while observing an appropriate
signal such as transmitted x-rays, fluorescent emission of characteristic radiation, or photoelectrons.
The spatial resolution of the measurement would be set by the focal spot size, assuming this is not
compromised by lens imperfections, mounting-related aberrations, improper illumination, or scanning
stage limitations such as placement accuracy or non-uniform dwell times.
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F IGURE 8.7. A possible approach to off-axis x-ray holography, which would require spatially and
temporally coherent radiation to achieve high contrast interference patterns.

region intensity pattern approximate an Airy pattern,1,8 with a focal region radius to the first
null given by 0.61λ/NA. The fact that this is a spherical wave illumination, rather than a plane
wave illumination, simply moves the focal plane to a conjugate point determined by the thin
lens equation for finite source distance q. Departures from spatially coherent illumination of
the lens, due to finite source size and divergence, are addressed in Section 8.6.

A second example in which coherence plays an important role is that of encoding complex
wavefronts, as in holography.3 A typical setup, such as might be used with a weak x-ray
scattering object, is shown in Figure 8.7. The incident wave is shown illuminating a flat mirror
and a nearby object. After reflection from the multilayer mirror, the radiation propagates
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toward the recording medium, and is referred to now as the reference wave. In the presence of
a weakly scattering object, secondary radiation is scattered in all directions, although Figure
8.7 shows only that portion directed toward the recording plane.

To form an interference pattern in the plane of the recording medium, the reference and
scattered waves must maintain a time averaged phase relation, that is, the detected fields must
at every point in this plane have a complex degree of coherence [Eq. (8.2)] of order unity, or
some fraction thereof, in order to form a recordable interference pattern. Because a complex
object, such as the double stranded structure in Figure 8.7, redirects radiation at various an-
gles, leading to a complex jumble of interacting waves at the detector, it is essential that the
incident and reference wavefronts maintain a simple variation across the field, such as with the
spherical wavefront invoked for development of the spatial coherence condition [Eq. (8.5)], so
as to provide a clear mechanism for wavefront encoding and subsequent decoding, or recon-
struction, with a similar spherical wavefront. Furthermore, to ensure high contrast encoding
(interference) it is essential that all path lengths from the source (not shown) to the detector
be equal to within a longitudinal coherence length [Eq. (8.3)], lcoh = λ2/(2 �λ), whether that
path involves a reflection from the mirror or scattering from the object. The latter condition
must be satisfied at every point in the detector plane. Having satisfied these conditions, and
with sufficient coherent photon flux or power, a suitable interference pattern can be produced
and recorded with an appropriate detector.

In general, the interference pattern at x-ray wavelengths will be characterized by a very
fine spatial scale, of order λ/ sin α, where α is the angle between reference and scattered
waves. The geometry of Figure 8.7 is designed to keep these two waves nearly collinear
(small α), but sufficiently separated to permit an unambiguous reconstruction – an attribute
of off-axis holography. Note that the selected geometry imposes a condition whereby the
angle of recorded scattering, which is due to spatial features of the sample, is about equal to
the change in direction of the reference wave, which is due to the spatial periodicity of the
multilayer mirror. Thus by this technique one would expect, if successful, to image features
in the sample with a scale size about equal to a multilayer period. By the Bragg condition
discussed in Chapter 4, this is equal to λ/

√
2 for a total turning angle of 90◦.

This example, however, is presented here to illustrate ideas and concepts rather than to
suggest its practical implementation. Although in principle it achieves a resolution equal to
the wavelength, large angle x-ray scattering from a non-periodic structure can be expected to
be weak. Success for such an experiment would require a high resolution (λ/ sin α) detector
with high (quantum) sensitivity, good dynamic range and linearity, and a radiation source ca-
pable of generating radiation with the requisite spatial and temporal coherence at sufficiently
high coherent photon flux or coherent power. In the following section we discuss the pro-
cedures by which a partially coherent radiation field can be spatially and temporally filtered
to achieve the desired degree of coherence. Early examples that demonstrate off-axis holog-
raphy with a spatially and temporally filtered x-rays are presented in the literature by Aoki,
Kikuta, Kohra, and their colleagues.9 Gabor holography is discussed by Howells, Jacobsen,
Kirz, and their colleagues,10 and soft x-ray interferometry is discussed by Joyeaux and
Pollack.11

A clever approach to atomic resolution holographic imaging of surface structures is based
on the scattering and interference of fluorescence emission. Known as inside source holog-
raphy, the technique does not require coherent illumination, but rather utilizes the inherent
coherence of single atom emissions scattered off near neighbors. The resultant interference
patterns are summed in the far field over the contributions of many atoms in an identical geo-
metric lattice. First proposed for this application by Szöke, recent experiments are described
by Fiagel, Tegze, Marchesini, and their colleagues in reference 9–101.



CHAPTER EIGHT: C O H E R E N C E A T S H O R T W A V E L E N G T H S 309

F IGURE 8.8 (see Colorplate IX). Spatial and spectral filtering is illustrated as a procedure to produce
coherent radiation, albeit at greatly diminished power, from an ordinary thermal source of visible light.
In the nomenclature used here, d would be the diameter of the pinhole shown in part (d), and θ would
be the divergence half angle in part (d), set either by the radiation emission characteristics, by a
downstream acceptance aperture, or by a lens. (From A. Schawlow,12 Stanford University.)

8.3 SPATIAL AND SPECTRAL FILTERING

We concluded in Section 8.1 that the limiting condition of spatially coherent radiation is a
space–angle product [Eq. (8.5)], or phase space† volume

d · θ = λ/2π

where d is a Gaussian 1/
√

e diameter and θ is the Gaussian half angle. All physical sources
generate radiation of space–angle product larger than this, often considerably larger. At visible
wavelengths, for instance, only lasers with intra-cavity mode control approach this limit, those
operating in the so-called TEM00 mode.5 The question here is: what if your source generates
radiation into a larger phase space, largely incoherent in nature, but you wish to use it for
phase sensitive experiments that require a higher degree of coherence? Schawlow,12 in his
article on lasers, introduces a very informative illustration to show how such radiation can
be filtered, both spectrally and spatially, to obtain radiation of greatly improved coherence
properties, albeit at the loss of considerable power.

The illustration is reproduced in part here in Figure 8.8. Shown is a typical thermal light
bulb with an extended filament heated to a temperature such that many excited atoms randomly

†This space–angle product is often referred to as a “phase space” volume. This derives from the study of
dynamics, where particles are followed in a position–momentum phase space (�x, �p). For photons
p = h̄k, and for nearly monochromatic radiation the interval in momentum �p = h̄ �k becomes
�p = h̄k �θ, where �θ is transverse to k. Thus for nearly monochromatic photons the interval of
position–momentum phase space becomes �x · �θ, which has a scalar minimum given by Eq. (8.5).
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radiate a broad spectrum of white light – that is, radiate a continuum containing all colors
of the spectrum visible to the human eye. The radiation is filtered in two ways. A pinhole is
used [Figure 8.8(b)] to obtain spatially coherent radiation (over some angular extent), as set
here by Eq. (8.5). A color filter is used [Figure 8.8(c)] to narrow the spectral bandwidth, thus
providing a degree of longitudinal coherence, as described here in Eq. (8.3). Combining both
the pinhole and the filter, one obtains radiation that is both spatially and temporally coherent,
as is seen in Figure 8.8(d), but with a power that is only a small fraction of the total power
radiated by the light bulb.

As Schawlow points out in his article, a visible light laser has the great advantage of
providing these desired coherence properties, often with very long temporal coherence length
(very narrow �λ/λ), without compromising available power. As we have seen, however, this is
a much greater challenge at x-ray wavelengths, both because the energetics make lasing at high
photon energy more difficult, and because the very short wavelengths place great demands on
the achievement of substantial spatial coherence [Eq. (8.5)]. As a consequence, lasing to date
has been accomplished largely at the longer wavelengths of extreme ultraviolet (EUV) and soft
x-rays, and has lacked spatial coherence. The techniques of spatial and spectral filtering are
therefore very important, and are now commonly used at EUV through x-ray wavelengths. In
the following section we discuss the use of spatial and temporal filtering of undulator radiation
at powers sufficient to permit experimentation at these very short wavelengths.

8.4 SPATIAL AND SPECTRAL FILTERING OF UNDULATOR RADIATION

As an example of pinhole spatial filtering, Figure 8.9 illustrates how the technique is used to
obtain spatially coherent radiation from a periodic undulator,7, 13 as was described in Chapter 5.
The secret to success in this spatial filtering process is that the electron beam cross-section
and divergence must be sufficiently small, so that a fair fraction of the radiated flux is able to
pass through a pinhole–aperture combination for which d · θ = λ/2π, as described earlier in
Eq. (8.5). That is, viewed through an appropriate pinhole and angular aperture, the radiation
must appear to come from a point source. Figure 8.9(a) depicts both the undulator and one
form of a spatial filter. Within the indicated central radiation cone (θcen), the emitted radiation
is characterized by a relative spectral bandwidth λ/�λ equal to N , which is the number of
magnet periods and thus the number of oscillations executed by the electrons as they traverse
the magnet structure. Figure 8.9(b) shows the calculated power radiated within the central cone
[Chapter 5, Eq. (5.41)] for an undulator at the Advanced Light Source (E = 1.9 GeV), which
was described previously in Chapter 5, with parameters summarized in Chapter 5, Table 5.1.

In general the phase space of the central radiation cone is larger than the limiting condition
[Eq. (8.5)] required for spatial coherence. That is, if we take a typical electron beam diameter
of 100 µm and a typical central cone half angle of 50 µrad, the product d · θ is 5 nm, generally
much greater than λ/2π for EUV and soft x-ray wavelengths. Thus for experiments that require
spatial coherence, a pinhole and angular acceptance aperture are introduced, as shown in Figure
8.9(a). This pinhole spatial filter is used to narrow, or filter, the phase–space of transmitted
radiation, much as was illustrated in Figure 8.8. Filtering to d · θ = λ/2π requires the use of
both a small pinhole (d) as shown, and some limitation on θ , such that the product is equal
to λ/2π . For example, one could accept the full central cone (θcen) and choose an appropriate
pinhole diameter d = λ/2πθcen. Alternatively, one could use a downstream angular aperture
(perhaps another pinhole or a lens) of acceptance angle θ < θcen, and choose d accordingly.
Both forms of spatial filter are used in practice.

To calculate the spatially coherent power transmitted by the pinhole spatialfilter, one must
consider the phase–space of the emitted radiation in both the vertical (y–z) and horizontal
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F IGURE 8.9 (see Colorplate X). (a) Undulator radiation with a pinhole spatial filter. (b) Power in the central
radiation cone (θcen, 1/N relative spectral bandwidth) for an 8 cm period undulator at the ALS
(Table 5.1). (c) Time-averaged coherent power after spatial filtering (d · θ = λ/2π ).

(x–z) planes, as the condition d · θ = λ/2π must be satisfied for both. If the electron beam
is elliptical, as was discussed in Chapter 5, Section 5.4.5, and illustrated in Figure 5.22, with
major and minor diameters dx = 2σx and dy = 2σy , and if the central radiation cone is also
somewhat elliptical due to differences in the horizontal and vertical electron beam divergence,
so that the characteristic half angles‡ are θx and θy , then the respective phase–space volume

‡In Eqs. (5.56) these were described as the “total” central cone half angles θT x=
√

θ2
cen+σ ′2

x and
θT y=

√
θ2

cen+σ ′2
y , where σ ′

x and σ ′
y are the respective measures of electron beam divergence in the

two planes. For simplicity in this chapter we have replaced θT x by θx and θT y by θy .
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containing the emitted power in the radiation cone, P̄cen of Eq. (5.41), will be (dxθx )(dyθy).
The pinhole spatial filter must reduce both dxθx and dyθy to λ/2π . The transmitted spatially
coherent power7 will therefore be reduced, proportionally, to a value

P̄coh,N =
(

λ/2π

dxθx

) (
λ/2π

dyθy

)
P̄cen (8.6)

where the horizontal (x) and vertical (y) phase–space filter factors are written separately to
remind us that each alone has a maximum value of unity. In much of what follows we will
assume that in both planes d · θ > λ/2π , permitting some simplifications to the formulae.¶

We recall from Chapter 5, Eq. (5.41a), that

P̄cen = πeγ 2 I

ε0λu
· K 2

(1 + K 2/2)2
f (K )

where I is the average current, λu is the undulator period, and f (K ) is a finite-K correction
factor of order unity which is given in Chapter 5, Eq. (5.41). The longitudinal coherence
length is understood to be lcoh = λ2/(2 �λ) = Nλ for N undulator periods and no further
spectral filtering. This is consistent with our formulations of P̄cen and θcen, which are defined
for a relative spectral bandwidth of λ/�λ = N . According to Eq. (8.6), the spatially coherent
power can generally be expected to decline with a λ2 behavior for shorter wavelengths. This
phase–space scaling, however, is modified for undulator radiation by several factors that arise
from the K-dependence of radiated power, involving the electrons’ transverse acceleration,
reduced axial velocity, and electron beam divergence parameters.

To examine the wavelength dependence of coherent power further we note that P̄cen

contains a factor K 2/(1+ K 2/2)2 that is related to wavelength through the undulator equation
[Eq. (5.28)]

λ = λu

2γ 2

(
1 + K 2

2
+ γ 2θ2

)

For on-axis radiation (θ = 0) one has

λ = λu

2γ 2

(
1 + K 2

2

)

or more conveniently, in terms of photon energy (h̄ω = 2πh̄c/λ),

h̄ω = h̄ω0

1 + K 2/2
(8.7a)

where

h̄ω0 ≡ 4πh̄cγ 2/λu (8.7b)

¶The phase–space assumption d · θ>λ/2π is generally valid for the undulator radiation, but is near
its limit (diffraction limited radiation) in the vertical plane for longer wavelength radiation at third
generation facilities.
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is the highest photon energy that can be radiated in the fundamental (n = 1) by a given
undulator, and that corresponds to the limiting case K = 0. With some algebraic manipulation
one can show that the three wavelength-dependent factors, λ2 due to the coherent phase–space
constraint, K 2 due to the transverse electron acceleration, and (1+K 2/2)2 due to the decreased
axial velocity (γ ∗ = γ /

√
1 + K 2/2) forfinite K , combine to give a photon energy dependence

(h̄ω0 − h̄ω)/h̄ω, so that the spatially coherent power [Eq. (8.6)] for an undulator wavetrain of
N cycles takes the form

P̄coh,N = eλu I

8πε0dx dyθxθyγ 2

(
h̄ω0

h̄ω
− 1

)
f (h̄ω/h̄ω0) (8.7c)

where in terms of photon energy the finite-K correction factor [Eq. 5.41(d)] can be rewritten
as

f (h̄ω/h̄ω0) = 7

16
+ 5

8

h̄ω

h̄ω0
− 1

16

(
h̄ω

h̄ω0

)2

+ · · · (8.8)

Note that for magnetic tuning of the undulator through a range 0 ≤ K ≤ 2, the photon energy
is varied by a factor of three, where now in terms of h̄ω/h̄ω0 the factor f (1) = 1, while for
instance f ( 1

3 ) = 0.65. Equation (8.7), however, does not give the full story, as the product
θxθy in the denominator may also contain a noticeable photon energy dependence, depending
on the relative values of electron beam divergence σ ′

x,y and the central cone half angle, θcen

[see the footnote below Eq. (8.6)]. For the case where the undulator condition σ ′2
x,y � θ2

cen is
well satisfied, which corresponds to a relatively narrow spectral shape (see Figure 5.23), the
product θxθy can be approximated as

θxθy � θ2
cen = 1 + K 2/2

γ 2 N

which by Eq. (8.7a) becomes θxθy � h̄ω0/h̄ωγ 2 N . The spatially coherent power in this
important special case then takes the form

P̄coh,N = eλu I N

8πε0dx dy

(
1 − h̄ω

h̄ω0

)
f (h̄ω/h̄ω0)

(
σ ′2 � θ2

cen

)
(8.9)

An example of coherent power versus photon energy is given in Figure 8.9(c) for the
case of an 8 cm undulator at the ALS, where σ ′

x = 23 µrad, σ ′
y = 3.9 µrad, and for K = 1

(286 eV photon energy, 4.34 nm wavelength) the central cone half angle is 44 µrad, so that
the undulator condition is well satisfied. The values of dx and dy are 520 µm and 32 µm,
respectively. The spatially coherent fraction (λ/2π )2/dxθx dyθy , given in Eq. (8.6), is 1.3×10−2

for this undulator at a wavelength of 4.34 nm (K = 1, h̄ω = 286 eV). Thus the 1.4 W power
in the central cone is reduced by spatial filtering to a value of 18 mW of spatially coherent
power. According to Eq. (8.9), the coherent power is a linearly decreasing function of photon
energy, going to zero at h̄ω0 = 428 eV. Although the curve in Figure 8.9(c) derives from the
more general Eq. (8.7), it very closely follows the specialized form given in Eq. (8.9) for this
case where σ ′

x,y � θcen.
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F IGURE 8.10. Spatially coherent average power within a 1/N relative spectral bandwidth for
undulators at the Advanced Light Source and the Advanced Photon Source, previously described in
Chapter 5, with electron beam parameters summarized in Table 5.1. Note that coherent power is
shown for the ALS at 1.9 GeV, and for the APS at 7.0 GeV beam energy. Harmonics (n = 3, 5) can be
used to bridge photon energies between those shown. Note that peak powers are nominally 54 times
higher than average power values at the ALS, and 100 times higher than average power values at the
APS.

Coherent power can be obtained at higher photon energies through the use of shorter un-
dulator periods (λu) and higher electron beam energies. This point is illustrated in Figure 8.10,
which shows spatially coherent power [Eq. (8.7)] versus photon energy for several undulator
periods and differing electron beam energies at the two U.S. synchrotron radiation facilities
described in Chapter 5 (Section 5.1 and Table 5.1). These curves are for a longitudinal coher-
ence length lcoh = Nλ/2, where N is the number of periods for each specific undulator. Note
that spatially coherent power of order 100 µW is achievable to photon energies as high as 10
keV at the Advanced Photon Source (E = 7.0 GeV).

The scaling of coherent power at high photon energy can best be appreciated through
examination of Eq. (8.7), where θx and θy are retained as variables because at high values of
γ , θcen is smaller and possibly comparable to σ ′

x and σ ′
y . Typical values are given in Table 5.1.

With dx , dy, θx , and θy fixed or slowly varying, and with the factors (h̄ω0/h̄ω−1) f (h̄ω/h̄ω0)
providing a local photon energy shape factor for a given undulator in the vicinity of its own
h̄ω0, the wavelength scaling of coherent power is dominated by λu/γ

2, which is proportional
to λ, or inversely to photon energy, as seen on the more global scale of Figure 8.10. In the
vicinity of h̄ω0 for any given undulator, λu and γ are fixed and the dependence on photon
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energy is dominated by the local shape factor described above. The absolute values of coherent
power are also affected by the storage ring current I , which is generally less at higher beam
energies. Again see Table 5.1 for typical values.

On a more global scale, the coherent power is observed in Figure 8.10 to scale roughly
as λ, when corrected for differences in current. From Eq. (8.6) we expect coherent power to
scale as λ2, but higher values of γ are required to reach shorter wavelengths, and the power in
the central cone scales as γ 2/λu , or as 1/λ, thus giving a net scaling proportional to λ, as seen
in Figure 8.10. Note that because of the duty cycle of the synchrotron facilities (e.g., 35 ps
FWHM Gaussian pulses every 2.0 ns at the ALS), the peak power can be considerably higher
than the average power, for instance, a factor of 54 at the ALS and a factor of 100 at the APS,
as discussed in Section 5.4.7.

For many experiments it is also desirable to narrow the spectral bandwidth, either be-
cause improved spectral resolution is required to probe atomic or molecular states, because
a chromatically sensitive zone plate focusing lens requires a relatively narrow spectral band-
width (narrower than one divided by the number of zones), or because a longer longitudinal
coherence length is required for high contrast interferometric or holographic fringe formation.
The radiation must then be spectrally filtered by a monochromator (not shown in Figure 8.9)
to further narrow the relative spectral bandwidth to a suitable value of �λ/λ, thus increasing
the longitudinal coherence length from a value of Nλ/2 to a greater length lcoh = λ2/(2 �λ).
For example, if monochromatization to a value λ/�λ = 103 were desired, the longitudinal
coherence length would become lcoh = 103λ/2. This of course is accomplished at a reduction
in spatially coherent power. By filtering from �λ/λ = 1/N to �λ/λ = 1/103, the transmit-
ted power is necessarily reduced by a multiplicative factor (�λ/λ)/(1/N ), or N/103 in the
example cited. Furthermore, there will be an insertion loss due to the finite monochromator
efficiency, including such factors as the grating or crystal efficiency, finite mirror reflectivi-
ties, etc. If we collect these factors into an inclusive beamline efficiency η, then the available
coherent power can be written as

P̄coh,λ/�λ = η︸︷︷︸
beamline
efficiency

(λ/2π )2

(dxθx )(dy, θy)︸ ︷︷ ︸
spatial
filtering

· N
�λ

λ︸ ︷︷ ︸
spectral
filtering

·P̄cen (8.10a)

which can be rewritten following the logic that led to Eq. (8.7) as

P̄coh,λ/�λ = eλu I (ηN�λ/λ)

8πε0dx dyθxθyγ 2

(
h̄ω0

h̄ω
− 1

)
f (h̄ω/h̄ω0) (8.10b)

where λ/�λ is the relative spectral bandwidth, N is the number of undulator periods, η is the
beamline efficiency (insertion loss), h̄ω0 = 4πch̄γ 2/λu is the highest photon energy achiev-
able with the fundamental (n = 1) of a given undulator in the limit K = 0, and f (h̄ω/h̄ω0)
is the finite-K correction factor for central cone radiation expressed in terms of h̄ω/h̄ω0 as in
Eq. (8.8). To emphasize the penalty paid for this further monochromatization we have brack-
eted the quantity ηN�λ/λ, which is a numerical factor less than unity that represents the loss
of power incurred through monochromatization.
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In the case where the undulator condition is well satisfied (σ ′
x,y � θcen), such that θxθy �

(1 + K 2/2)/Nγ 2, the expression for coherent power takes the form

P̄coh,λ/�λ = eλu Iη(�λ/λ)N 2

8πε0dx dy
·
(

1 − h̄ω

h̄ω0

)
f (h̄ω/h̄ω0)

(
σ ′2 � θ2

cen

)

(8.10c)

which we note scales as N 2 in this limit. This expression is quite accurate for low emittance§

soft x-ray synchrotron facilities such as the ALS and its equivalent elsewhere, as the condition
σ 2

x,y � θ2
cen is reasonably well satisfied for γ � 3728, N � 50–100, and σ ′ ≤ 20 µrad. Note

that while in this case the coherent power scales as N 2, in the case where σ ′ � θcen, as may
occur for high γ facilities, Eq. (8.10b) must be used and the scaling of coherent power will
be closer to linear in N .

In the example cited previously for an 8 cm period undulator at the Advanced Light
Source, a monochromator and beamline optics, with an overall efficiency η of 10% (30%
grating efficiency and five glancing incidence mirrors at 0.8 reflectivity each) are used to
obtain λ/�λ = 103. The resultant coherent power at 4.3 nm wavelength (286 eV) would be
[following Eq. (8.10a)] ( 1

10 ) (0.013) (55/103) (1.4 W), or about 100 µW, with a longitudinal
coherence length of 103λ = 3.5 µm. The detailed photon energy (wavelength) dependence is
included in Eq. (8.10c).

An example of a beamline designed for spatial and spectral filtering of soft x-ray and
extreme ultraviolet (EUV) undulator radiation is shown in Figure 8.11. It employs a grazing
incidence grating monochromator14, 15 as appropriate for use at these wavelengths. (There is
extensive recent literature on the design of grating monochromators.16−18)

The first optical element (M1) is a water cooled plane mirror set at an angle that reflects
the desired radiation but absorbs the unwanted power residing in higher harmonics. Following
this are curved reflective optics that form an image of the radiating electrons at 65 : 1 spatial
demagnification on a downstream entrance pinhole. As with any imaging system, this provides
a concomitant increase in angular illumination (65θcen � 2.9 mrad at K = 1), as required in
this case for the downstream experiment, which here involves coherent interferometry of
EUV optical systems. With this relatively large angular illumination, pinholes of about 1 µm
diameter are required to approximate the condition [Eq. (8.5)] for spatial coherence at 13 nm
wavelength.‖ Also included in the beamline optics is a combined grazing incidence grating
and exit slit that provides the desired wavelength and spectral bandpass. Use of a varied
line space grating permits wavelength tuning without movement of the (fixed) exit slit.14, 15

The remaining mirrors permit an intermediate image of the source at the exit slit of the
monochromator, with final vertical and horizontal image formation at the pinhole. Though
separate branchlines for coherent optics and photoemission microscopy are shown, details of
the beamline optics are omitted.

Calculations of the anticipated coherent power available with this undulator and beamline
combination are shown in Figure 8.11(b), for a monochromator setting of λ/�λ = 103, so that

§The phrase “low emittance” refers to an electron beam of small (phase space) product πσσ ′. The phrase
is occasionally used to describe the facility as well.

‖The work at 13 nm wavelength involves the use of Mo–Si multilayer mirrors, as discussed in Chapter 4.
The coated optics are used for reduction imaging in the EUV lithography program, as discussed in
Chapter 10, Section 10.2.
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In this chapter we consider Fresnel zone plates, particularly as they are used as diffractive im-
age forming lenses for high resolution soft x-ray microscopy. We begin with a relatively simple
approach based on our general experience with interference phenomena. From this we obtain a
physical appreciation for zone plate performance, and derive most of the useful formulae sum-
marized on this page. We also describe the complementary features of various zone plate mi-
croscopes. We next consider formal diffraction theory to better understand the limits of spatial
resolution. Pinholes are also considered, as they play an essential role in generating the spatially
coherent radiation required for scanning microscopy and other applications involving spatially
coherent short wavelength radiation. Finally, we conclude with applications of soft x-ray mi-
croscopy to the physical and life sciences, and a short section on the fabrication of zone plates.

9.1 INTRODUCTION

In previous chapters we have discussed the various ways in which radiation can be redirected
for image formation, spectroscopic, and other applications. In Chapter 1, Figure 1.13, we
summarized the basic processes of scattering, diffraction, refraction, and reflection. In Chapter
3 we studied refraction, the bending of radiation paths at the interface between materials of
differing refractive index n = 1 − δ + iβ. For EUV and soft x-ray wavelengths, we observed
that for all materials the ratio β/δ is sufficiently close to unity that significant refraction cannot
be obtained within an absorption length. As a consequence the formation of real images by
refraction of EUV or soft x-ray radiation is impractical. Glancing incidence total external
reflection with curved optics provides a successful path to image formation, particularly at
EUV, soft x-ray, and x-ray wavelengths where there are few competing techniques; but the
image resolution is significantly compromised by aberrations. Multilayer coatings extend the
use of reflective optics, as discussed in Chapter 4, particularly at EUV wavelengths longer
than 5 nm, where normal incidence coatings achieve high reflectivity. With high quality
curved substrates, multilayer coated mirrors permit near-diffraction-limited imaging in the
EUV region, i.e., limited only by the wavelength and numerical aperture of the system.

At shorter wavelengths, particularly in the soft x-ray region extending from perhaps
0.3 nm to 5 nm, diffractive techniques using Fresnel zone plate lenses of various forms are
of great interest1−5 because of their ability to form images at very high spatial resolution,
approaching the diffraction limit. Diffraction is the process by which radiation is redirected
near sharp edges. As it propagates away from these sharp edges or obstacles, it interferes
with nearby undiffracted radiation, producing bright and dark bands known as interference
patterns. Because the diffracted radiation propagates in a new direction, the dark and bright
interference patterns appear to move laterally with distance away from the obstruction. For
small diffracting structures such as disks, pinholes, and gratings (repetitive lines and spaces) it
is found that these diffraction patterns, and the energy they represent, propagate away from the
structure at angles of order θ ∼ λ/d, where d is a characteristic dimension. With repetitive
structures, such as transmission gratings, consisting of many parallel lines and spaces, the
positive interference in certain directions can lead to a very strong redirection of energy. This
is also possible in circular geometries, with proper placement of the radial zones, so that
positive interference of the diffracted radiation occurs at a well-defined downstream position.
This downstream distance is known as the focal length, and the appropriate structure that leads
to this focusing of energy is known as a Fresnel zone plate lens. Capable of spatial resolution
measured in tens of nanometers, these diffractive lenses are especially valuable for the study
of microscopic objects of limited lateral dimensions.
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F IGURE 9.1. A Fresnel zone plate lens used for x-ray microscopy. (Courtesy of E. Anderson,
LBNL.)
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F IGURE 9.2. A Fresnel zone plate used as a diffractive lens to form an x-ray or EUV image of a source
point S in the image plane at P. The lens is shown as having a diameter D and outer zone width �r .
The object and image distances are p and q, respectively.

Figure 9.1 shows a zone plate lens used in soft x-ray microscopy. Figure 9.2 illustrates
the general technique for point to point imaging with a Fresnel zone plate lens. In its simplest
form the zone plate consists of alternating opaque and transparent zones, essentially a circular
grating, with radial zones located such that the increased path lengths through sequential
transparent zones differ by one wavelength each and thus add in phase at the image point.6−13

In this manner, on a point by point basis, the image of a full two-dimensional object can be
formed in the image plane, using essentially incoherent radiation. As we understand from
the previous chapter, the smallest possible spot size that can be formed at P is obtained with
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F IGURE 9.3. Diffraction from a transmission grating
showing only the 0th and ±1st orders. Higher
orders are omitted for clarity. Constructive
interference of the diffracted radiation occurs at
angles where the path length increases by λ for
each additional period d of the grating, such that
sin θ = λ/d in first order.

spatially coherent illumination of the zone plate, a subject of interest for the formation of
scanning spot microscopes, which we discuss in the following paragraphs. Of interest here as
well is the practical case of partially coherent radiation and the potential advantage this has
for image formation and resolution.

We begin our analysis with a simple transmission grating, as illustrated in Figure 9.3.
Constructive interference occurs, in first order, at angles where the path length is increased by
one wavelength, such that

sin θ = λ

d
(9.1)

This occurs for both positive and negative angles, giving rise to the ±1st orders of the grating,
in addition to the 0th order in the forward direction. Higher orders will be generated at angles
θm , corresponding to increased path lengths mλ, such that

sin θm = mλ

d
(9.2)

where m = 0, ±1, ±2, ±3, . . . . For radiation incident on the grating at an angle θi , measured
from the normal, one readily shows that the condition for constructive interference is

sin θ − sin θi = mλ

d
(9.3)

where again m = 0, ±1, ±2, ±3, . . . . Equation (9.3) is known as the grating equation, and
Eq. (9.2) is clearly a special case of it for normal incidence.

The fraction of incident energy diffracted into the various orders depends on the nature
of the periodic structure, i.e., the sharpness of profile, the bar to space ratio (line width as a
fraction of grating period), and the complex refractive index, which affects the absorption and
phase shift in the grating. For a transmission grating of opaque lines of width equal to half
the grating period, as illustrated in Figure 9.4, one can represent the transmission function in
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F IGURE 9.4. Representation of a transmission grating of unit absorption in terms of Fourier
components. Each component m of the expansion represents an equivalent thin grating, where the
coefficient cm is related to the amount of energy diffracted to a given order m, and where the period
d/m is related to the angle of diffraction for that order. Only the first term (m = 1) in the expansion is
shown. The first coefficients are c0 = 1

2 , c1 = 1/π , c2 = 0, c3 = 1/3π , etc., as derived in the text.

a Fourier series expansion, taking even (cosine) terms only for the coordinate choice taken:

f (ξ ) =
∞∑

m=−∞
cm cos

(
2πmξ

d

)
(9.4)

with coefficients

cm = 1

d

∫ d/2

−d/2
f (ξ )e−2π imξ/d dξ

where f (ξ ) = 1 in the interval |ξ | ≤ d/4, and = 0 in the interval d/4 < ξ ≤ d/2. Substituting
for f (ξ ), noting that e−iθ = cos θ − i sin θ (Appendix D) and that the sine term does not
contribute in this even interval, the integral for the coefficient becomes

cm = 2

d

∫ d/4

0
cos

(
2πmξ

d

)
dξ

cm = sin(mπ/2)

mπ
(9.5)

By L’Hospital’s rule, c0 = 1
2 . The even order coefficients are all zero, due to the symmetry

of the problem with this choice of coordinate origin. The odd order coefficients are cm =
1/π, −1/3π, 1/5π, . . . , for m = ±1, ±3, ±5, . . . , respectively.

We can now represent the single rectangular grating of unit absorption by a superposition
of thin cosine gratings of increasing spatial frequency km = 2πm/d and transmission cm .
Each such grating corresponds to one term in the expansion, leading to radiation of the
various diffractive orders m, at angles θm described earlier in Eq. (9.2), and associated electric
fields Em = cm E0, where E0 is the incident electric field at the grating. From Chapter 3,
Eqs. (3.18–3.20), it follows that the intensities of the various diffractive orders are given by

Im =
√

ε0/µ0|Em |2 = |cm |2 I0 (9.6)

so that the efficiencies ηm = Im/I0 for diffraction to the various orders are proportional to
|cm |2, and thus from Eq. (9.5)

ηm =
⎧⎨
⎩

0.25 m = 0
1/m2π2 m odd
0 m even

(9.7)
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For an opaque transmission grating of equally wide lines and spaces, 25% of the incident
energy is in the 0th order, approximately 10% is diffracted to each of the ±1st orders, and so
forth, while the grating itself absorbs 50% of the incident energy.14, 15

In phase gratings the opaque lines are replaced by partially transmitting materials to
reduce absorptive losses. For materials and wavelengths for which β/δ is minimal, and for
thicknesses that permit a relative propagation phase shift approaching π , this can lead to a
significant enhancement of diffraction efficiency.

The coefficients in Eq. (9.7) correspond to a symmetric grating of equal line and space
widths, permitting a representation [Eq. (9.4)] involving only even cosine functions. For an
asymmetric grating involving unequal line and space widths, odd sine functions would also
be required. An example would be a grating with line widths equal to 1

3 the grating period
and open spaces of width equal to 2

3 of the grating period. In such cases the asymmetry (sine
terms) leads to non-zero even orders, i.e., finite values of |cm |2 for m = ±2, ±4, etc. This is
very much analogous to the discussion of even multilayer diffraction orders for asymmetric
coatings of 
 �= 0.5, as discussed in Chapter 4, Section 4.2 and Figure 4.4 therein. This subject
is relevant here, as we shall shortly consider the diffraction efficiency of zone plate lenses.

For symmetric structures of equal area in successive zones (opaque and transmissive)
we will again find only odd orders, m = ±1, etc. The even orders (m = ±2) will cancel at
the focal point. However, for asymmetric zones of unequal successive areas, even orders do
appear. An example of this would be a zone plate where the alternate open zones are narrower
than prescribed due to imperfections in the fabrication process. Depending on the degree of
asymmetry, even orders of various intensities would appear.

An extensive literature exists on the subject of diffraction from transmission and re-
flection gratings. In particular see Born and Wolf14 for an extensive introduction, Hecht13

for a tutorial on blazed reflection gratings, Morrison15 for a description of phase gratings
at short wavelengths, and Michette12 for a general description of diffraction gratings at soft
x-ray wavelengths. Variable line space gratings are discussed by Hettrick and Underwood and
their colleagues.16−17 The topic of EUV/soft x-ray gratings continues to be one of active re-
search, with applications in many fields, including synchrotron radiation, astrophysics, plasma
physics, and fusion. Several recent books specifically addressing this spectral region add to
the wealth of valuable literature on the subject of reflection and transmission gratings.18−20

In the next section we discuss Fresnel zone plates as circular diffraction gratings that also
generate many orders, some of which are diffracted radially inward toward the optic axis and
can form a real image (the positive orders), and some of which are diffracted radially outward,
forming a virtual image (the negative orders).

9.2 THE FRESNEL ZONE PLATE LENS

The focusing properties of a Fresnel zone plate lens can be understood by considering the first
order diffraction from a circular grating with the zonal periods adjusted so that at increasing
radius from the optic axis the periods become shorter, and thus by Eq. (9.1) the diffraction
angle becomes larger, thus permitting a real first order focus, as illustrated in Figure 9.5. If
one draws a right triangle with the focal length f as one side, the radius of any zone rn as a
second side, and the hypotenuse of length f + nλ/2, then by the Pythagorean theorem the
zonal radii are given by

f 2 + r2
n =

(
f + nλ

2

)2

(9.8)
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F IGURE 9.5. A Fresnel zone plate lens with plane wave illumination, showing only the convergent
(+1st) order of diffraction. Sequential zones of radius rn are specified such that the incremental path
length to the focal point is nλ/2. Alternate zones are opaque in the simple transmission zone plate.
With a total number of zones N the zone plate lens is fully specified. Lens characteristics such as the
focal length ( f ), diameter (D), and numerical aperture (NA) are described in the text in terms of λ, N ,

and �r , the outer zone width.

which upon expansion and consolidation of like terms becomes

r2
n = nλ f + n2λ2

4
(9.9)

The term n2λ2/4, which represents spherical aberration, can be ignored for f � nλ/2,
which we will see shortly corresponds to a lens of small numerical aperture NA = sin θ =
λ/(2 �r ) � 1, as is often the case at x-ray wavelengths. Where this is not the case, perhaps
with a larger NA optic at an EUV wavelength, the term should be retained. For the low NA
case Eq. (9.9) simplifies to

rn �
√

nλ f (9.10)

showing that a real first order focus is achieved when successive zones increase in radius by√
n, providing the desired prescription by which the radial grating period must decrease in

order to provide a common focus. The earliest known record regarding the demonstration of
focusing light with alternately opaque Fresnel zones is that of Lord Rayleigh in 1871.6

We can now obtain expressions for the lens diameter D, focal length f , numerical aperture
NA = sin θ , spatial resolution, and depth of focus. We choose to do this in terms of the
wavelength λ, the total number N of zones, and the outer zone width �r . We do this from
an experimental point of view. In designing an experiment the wavelength is often a first
priority, driven by the elemental composition of the material or sample under study and their
characteristic absorption and emission lines. In microscopy the next priority is the spatial
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resolution required to see features of interest. For zone plate lenses the spatial resolution limit
is set by the outer zone width �r , as we will see shortly. As our third choice we take N ,
the total number of zones. As we will see in the following paragraphs, zone plate lenses are
highly chromatic, that is, the focal length of the lens varies strongly with wavelength. Thus
for precise imaging it is necessary to restrict the illumination spectral bandwidth, �λ/λ. We
will see shortly that there is an inverse relationship between �λ/λ and N , the total number of
zones. Thus the total number of zones N will be restricted by the relative spectral bandwidth.
With this motivation we proceed in the following paragraphs to develop relationships for f, D,
NA, resolution, and depth of focus in terms of λ, �r , and N .

We begin by defining the outer zone width for n → N ,

�r ≡ rN − rN−1 (9.11)

where N is the total number of zones, i.e., the sum of both opaque and transparent zones
(twice the number of radial periods). The outer zone width �r provides a very convenient
parameter, and is useful in expressions for other lens parameters.

Now we write Eq. (9.10) twice, once for rN and once for rN−1, and subtract as follows:∗

r2
N − r2

N−1 = Nλ f − (N − 1)λ f = λ f

Using the definition of �r given in Eq. (9.11), one also has for the left side of the above
equation

r2
N − (rN − �r )2 = 2rN �r − (�r )2 � 2rN �r

since �r � rN for large N . Combining the above two equations, one obtains

2rN �r � λ f

or

D �r � λ f (9.12)

From Eq. (9.10) we note that λ f � r2
N /N , so that from Eq. (9.12) one has

D �r � r2
N

N
= D2

4N

or

D � 4N �r (9.13)

The focal length can then be obtained from Eq. (9.12) as

f � D �r

λ

∗Note that the area of successive zones, π (r2
n − r2

n−1) = πλ f , is a constant, at least within the long
focal length, small NA approximation leading from Eq. (9.9) to Eq. (9.10). Thus the areas of all zones
are equal and contribute equally to the intensity of focus.
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or in combination with Eq. (9.13)

f � 4N (�r )2

λ
(9.14)

This is a very important relationship for the design of zone plate microscope lenses in that it
shows that the focal length scales directly with the number of zones, with the square of the
outer zone width (which essentially sets the resolution), and inversely with the wavelength,
thus introducing a strong chromatic effect.

The numerical aperture (NA) of a lens is defined as

NA ≡ sin θ

where θ is the half angle measured from the optic axis at focus back to the lens, as illustrated
here in Figure 9.5. Thus the numerical aperture of a zone plate lens is given by NA = rN / f =
D/2 f , or from Eq. (9.12)

NA � λ

2 �r
(9.15)

which is a particularly simple form that will be convenient when considering spatial resolution.
A related quantity is the lens F-number, which we will abbreviate as F#, defined as

F# ≡ f

D

or again using Eq. (9.12)

F# � �r

λ
(9.16)

We will return to these parameters in the following section on spatial resolution, depth of
focus, and chromatic aberration.

In the preceding paragraphs we have considered the focusing conditions for a zone plate
lens with plane wave illumination, as illustrated in Figure 9.5. Next we consider the point by
point imaging of an object at a finite distance q from the zone plate, to an image plane at a
distance p, as illustrated in Figure 9.6.

Again the successive zones, alternately transmissive and opaque, are constructed so as to
add λ/2 to successive path lengths, so that

qn + pn = q + p + nλ

2

where for modest numerical aperture lenses

qn = (
q2 + r2

n

)1/2 � q + r2
n

2q

pn = (
p2 + r2

n

)1/2 � p + r2
n

2p
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F IGURE 9.6. Point by point imaging with a Fresnel zone plate lens is illustrated. Successive propagation
paths are increased by λ/2.

so that

q + r2
n

2q
+ p + r2

n

2p
� q + p + nλ

2

r2
n

2q
+ r2

n

2p
� nλ

2

1

q
+ 1

p
� 1

f
(9.17)

where from Eq. (9.10), f = r2
n /nλ. Equation (9.17) relates the image and object distances to

the focal length as for an ordinary visible light refractive lens. Similarly, one can show that
the transverse magnification is

M = p

q
(9.18)

We now have a basic understanding of how a Fresnel zone plate can be used both to focus
radiation and to form a real image of an extended object using first order diffraction.

Recall, however, that a transmission grating generates many orders, thus complicating
the use of a zone plate lens and leaving only a fraction of the available photons for the primary
purposes of a given experiment. The procedure, suggested in Figure 9.5, of adding a path
length of nλ/2 for constructive interference of sequential zones in first order can be extended
to the higher orders (m = 2, 3, . . .) by adding path lengths mnλ/2. Following the same
procedures used in the preceding paragraphs for the first order (m = 1), one finds that the
radial zones correspond to phase advances for the higher order diffracted waves given by

r2
n � mnλ fm (9.19)

for zones n = 0, 1, 2, . . . and diffractive orders m = 0, ±1, ±2, . . . , and with corresponding
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F IGURE 9.7. Representation of a Fresnel zone plate as a transmission grating in terms of the radius
squared. Only the first term (m = 1) is shown.

focal lengths given by

fm = f

m
(9.20)

where we note that the negative orders give rise to virtual foci of negative focal length. The
diffraction efficiencies of the various orders can be analyzed much like the transmission grating
efficiencies of the previous section [see Eqs. (9.4) and (9.5)]. In the case of the transmission
zone plate of unity absorption in the opaque zones, one can represent the transmission function
in a Fourier series expansion in terms of r2, as suggested by Eq. (9.19).

The sketch in Figure 9.7 is useful for visualizing the Fourier decomposition and identifying
the periodicity in r2. Following Goodman,21 we expand the transmission function in terms of
γ r2, taking only odd (cosine) terms for the chosen coordinates, so that

f (γ r2) =
∞∑

m=−∞
cm cos(mγ r2) (9.21)

where from Figure 9.7 we see† that γ = π/λ f . This can be written as

f (u) =
∞∑

m=−∞
cm cos(mu)

where u = γ r2 = πr2/λ f , and where the Fourier coefficients are given by

cm = 1

2π

∫ π

−π

f (u) cos(mu) du (9.22)

For the alternately opaque and transmissive zones of interest here the transmission function
f (u) = 1 for 0 ≤ u ≤ π/2, and f (u) = 0 for π/2 < u ≤ π (see Figure 9.7), so that

cm = 1

π

∫ π/2

0
cos mu du

†A radial phase shift of 2π corresponds to a difference �n = 2 in the zone plate (one opaque,
one transmissive). From Eq. (9.19), for m = 1, this gives an argument in the expansion parameter
γ (r2

n − rn−2) = 2λ f γ = 2π , or γ = π/λ f . Check this in Figure 9.7, where the phase shift between
n = 2 and n = 4 corresponds to 7π/2 − 3π/2 = 2π .
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F IGURE 9.8. Zone plate diffractive focusing is illustrated for the first three positive orders. An order
sorting aperture (OSA), of the type that would be used to block all but the first order, is also shown.
Negative orders (m = −1, −3, −5) are shown as solid lines diverging from the optical axis, and
projected backward to virtual foci (behind the lens) by dashed lines.

or

cm = sin(mπ/2)

mπ
(9.23)

where m = 0, ±1, ±2, ±3, . . . . This is identical to the result obtained earlier for the linear
transmission grating. As we observed in that case, the diffraction efficiencies to the various
orders are given by [Eq. (9.16)]

Im = |cm |2 I0

so that for a Fresnel zone plate of alternately opaque and transmissive zones the diffraction
efficiencies are given by

ηm =

⎧⎪⎨
⎪⎩

1
4 m = 0

1/m2π2 m odd

0 m even

(9.24)

where half the incident energy is absorbed by the opaque zones. The efficiency to the first order
focus is thus about 10%, another 10% goes to the divergent m = −1 order, approximately
1% goes to the divergent third order (m = 3, virtual focus), etc., while 50% of the incident
radiation is absorbed and 25% is transmitted in the forward direction (m = 0). As in the case
of the transmission grating considered in Section 9.1, the even orders do not contribute in the
symmetric case where successive zone areas are equal. The various orders are illustrated in
Figure 9.8.

The decreasing efficiency with increasing order m has an interesting explanation. Within
a given transmissive zone n, the even orders of m cancel at the focus, so that only odd



Chapter 10

EXTREME ULTRAVIOLET
AND X-RAY LITHOGRAPHY

λeuv λx

Lw = k1
λ

NA
(10.1)

DOF = ±k2
λ

(NA)2
(10.2)

σ = NAcond

NAobj
(10.3)

Lw = α
√

gλ (10.4)

Historically, lithography is the printing process in which an image is transferred from aflat sur-
face, initially a smooth stone and later a metal plate, through the selective use of ink-receptive
and ink-repellent treatments. Today a major application of lithography is the repetitive copy-
ing of highly detailed sub-micron spatial patterns, which after processing will form single
layers of an interconnected multilevel semiconductor electronic structure commonly known
as a microchip.1 These chips are the basic building blocks of modern electronic instruments,
computers, and telecommunications equipment. In this chapter we describe current state of
the art lithographic equipment: deep ultraviolet (DUV) steppers that use mercury arc lamps
and excimer lasers, with largely refractive optics, to print patterns with sub-quarter-micron
features. The SIA Technology Road Map for Semiconductors,2 which provides a 15-year,
six-generation projection of integrated circuit (IC) characteristics, is described, with selected
technical parameters for microprocessors and dynamic random access memory (DRAM) chips
through the year 2012. This is followed by sections describing two candidate technologies,
each of which has the potential to provide the engineering and economic solution to these
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