

RF systems

Francis Perez

Why we need a RF System?

- To accelerate the beam to high speeds (~c) / high energy
- To restore the energy loss via synchrotron radiation of the stored e⁻ beam
- To provide a stable energy bucket to the particles to ensure a long lifetime

- accelerate the electron beam to high speeds (~c)
 i.e. high energy
 - in a LINAC:
 - 90 keV to 100 MeV

- in a BOOSTER:
 - 100 MeV to 3 GeV

The electrons get an energy of 1 eV

Electrons have to see an accelerating voltage of three thousands millions
<u>Volts</u>!

Storage ring energy 3 GeV = 3.000.000.000 eV for a velocity of 99.9999985% de c

• To restore the energy loss via synchrotron radiation of the stored beam

• To provide stability, i.e. a stable energy bucket to ensure a long lifetime

Overvoltage factor:

 $q = V_{cav} / U_{losses}$

to have longitudinal focusing

 provide a large stable energy bucket to ensure a long lifetime of the stored e⁻ beam

inside the RF cavities an electromagnetic field is stored

- and with the use of:

 $\mathbf{F} = \mathbf{q} \mathbf{E}$

- it creates a force that:
 - accelerate the electrons
 - **stabilize** the movement of the electrons

RADIOFREQUENCY SYSTEM (RF), f = 500 MHz

Contents

• Part I: Cavities and waveguide system

- Part II: High Power Amplifiers
- Part III: Low Level RF control (LLRF)

Cavity

TM₀₁₀ Fundamental resonating mode

Туре	E-Field (peak)
Monitor	Mode 1
Maximum-3d	4.61371e+007 V/m at 0 / 0 / 5
Frequency	2.29257
Phase	0 degrees

 Electromagnetic RF fields resonate inside the cavity creating Electric and Magnetic Fields

Electric Fields: Maximum electric field in the axis (electrons path)			Magnetic Fields: Magnetic field loops around electric field (maximum in the outer part) and causing ohmic heating								
Type Monitor	E-Field (peak) Mode 1	**************************************	T <u>i</u> M	ype H onitor M	I-Field (peak) Node 1		RR	₩. ₩. ₩. ₩. ₩. ₩. ₩.	4 1	XXI	1
Plane at x	0		P	lane at z 2	2.5	1	KK	****	4-4-1		1
Maximum-2d	4.61371e+007 V/m at 0 /	0/0	M	aximum-2d 7	7383.3 A/m at	2.6811	8/2.	58118 /	2.5	1	
Frequency	2.29257		F	requency 2	2.29257			the sea de	1-12-	M(1):	
Phase	0 degrees		P	hase 9	0 degrees						

* Info from Dr G Burt, Lancaster University

Cavity

Normal conducting vs Superconducting

Normal conducting vs Superconducting

Quality Factor typical values :

Q = $\sim 10^4$ (NC) $\sim 10^{10}$ (SC)

due to the lowest surface resistance: U ~ 0

ALBA case

NC cavity

Total Voltage	3.6	MV
No Cells/IPC	6	
Type of cavity	nc	
Voltage / cell	600	kV
R _{shunt}	3.0	MΩ
Cavity power	60	kW
Beam power/cav	87	kW
IPC power	147	kW
Amplifier Power	160	kW

SC cavity

3.6	MV		
2			
SC			
1800	kV		
4500	MΩ		
0	kW		
260	kW		
260 260	kW kW		
	 3.6 2 sc 1800 4500 0 		

Total Power 960

kW

>>

Total Power 600

0 kW

But, all the cryogenics!

Valve Box

Turbines

Cavity

Dewar

SC RF

Gas reservoir

Cavity

Single cell vs Multicell

Single cell vs Multicell

The multicell cavity is highly efficient to transform power in voltage: Zcavity = N x Zcell

But also the impedance of the HOMs

Cavity

Cavity

High Order Modes - HOM

Cavity HOMs

A RF cavity has more than just the fundamental resonance frequency at 500 MHz

Beam induced HOM power

Voltage inside the cavity deforms

HOM unstability

Cavity

Beam induced HOM power

Normally high current Storage Rings

Low current Injector - Booster

Cavity

Frequency?

- NC 100 MHz MAXIab
- SC 352 MHz SOLEIL
- NC 500 MHz ALBA
- NC 800 MHz SPS CERN
- SC 1.3 GHz EU-XFEL
- NC 3 GHz Linacs

•••

The choice will depend on the application, on the kind of accelerator:

Linear → Single particle passage Circular → Multi particle passage Acceleration (booster) Storage (light source) Collider

. . .

Decided case by case, but look what others did!

RF window - coupler

Couple the transmission line with the cavity to transfer the power. Coupling can be: Magnetic (Inductive) Electric (Capacitive)

Example of a magnetic coupler

Frequency Tuner

Changes the resonant frequency of the cavity by changing the volume. Two main types

By deformation

By pungler

RF transmission system

Waveguide system

Coaxial vs. Waveguides

Coaxial lines

- frequency range: 0...10 GHz
- largest practical size: 350 mm for outer conductor, 150 mm for the inner conductor
- power rating: for CW operation at 200 MHz: 1 MW
- low-pass line, upper frequency limit given by moding
- relatively high attenuation
- power limited by inner conductor (high field => thermal load)
- in general easier to handle than waveguides

Waveguides

- frequency range 0.32...325 GHz (standard guides)
- largest practical size: 590 mm x 298 mm
- power rating: 150 MW peak at 310 MHz
- low attenuation
- bandpass, low frequency cut-off determined by dimension

F. Caspers, M. Betz; JUAS 2012 RF Engineering

Transmission lines

PEAK POWER HANDLING VI FREQUENCY

Combiner / Splitter

Combines, add, the power of two or more amplifiers

Circulator

It is like a *roundabout,* RF waves should always circulate around in a given direction, and always take the 1st exit

LOAD

Circulator & Load

It isolates the amplifiers from the behaviour of the cavity Load Cavity **Ferrites** \longleftrightarrow φ **RF** power absorbed by the load Amplifier

Transitions

Feed the RF power into the cavity

= E-Field (peak)

- = e-field (f=499.654) [2]
- (= Ø
 - = 499.654
- = 0 degrees
- / = 183.305 V/m at 0 / 301.951 / -202.858 🕺

Other components

Rectangular Waveguide (WR1800 for 150 kW cw):

Many configurations

Thank you

Questions?