

Injector systems: The ALBA Linac

Francis Perez & Raquel Muñoz

Outline

- Introduction to accelerators
- Injectors for high energy accelerators:
 Linac
 Cyclotron
 Microtron
- Linac structure: the ALBA linac
- Electron sources for Linacs
- RF cavities
- Diagnostic
- Summary

Accelerators: accelerate charged particles (e⁻, e⁺, p, ions,..)

Introduction

Circular	-Particles pass RF-cavities several times. -No space problem for RF-cavities. -Smaller in length than a Linac of comparable energy.
	-Particles loose energy by synchrotron radiation (especially low mass particles). Although in some cases it can be intended. -High magnetic fields are needed to turn high mass particles (protons)
Linear	-No energy loss due to synchrotron radiation. -High gradient: high energy gain in a short length. Handle high currents. -Well developed technology (industrial products)
	-Particles cross only once the RF-cavities. Low luminosity. -RF-cavities have to work at high frequencies (or small wavelengths) to reduce space.

• Circular/Linear accelerator choice depends on:

energy range, costs, space reasons, type of particle, ...

• In big projects, it is used a combination of both types.

Next big projects with electron / positron LINAC colliders:

<u>CLIC:</u> 3 TeV, superconducting @ 12 GHz, 100 MV/m gradient, 2 linacs, total length: 48 km! <u>ILC:</u> 500 GeV, 31 MV/m, superconducting, 2 linacs, total length: 31 km!

•Synchrotrons can not accelerate particles from a starting energy E_i=0.

•Magnets that can produce a linear and homogeneous magnetic field starting from low current do not exist.

•Synchrotrons accelerate particles from energies about $E_i \sim 20$ MeV.

Typical injectors for synchrotron are:

•<u>Linac</u> •<u>Microtron:</u> •<u>Cyclotron</u>

Injector: Linac

The particle acceleration using electrostatic voltage is technically limited to hundreds of kV due to discharges.

Solution: Use of an alternating voltage of the form (usually high frequency RF):

- Drift tubes shield negative voltages.
- RF voltage moves $\tau_{\text{RF}}/2$ while particle travels through one drift section.
- •RF frequency is constant.
- •Particles velocity v_i increase.

Required separation between gaps i and i+1:

$$L_i = \frac{v_i \tau_{RF}}{2} = \beta_i \frac{\lambda_{RF}}{2}$$

Energy reached after the i-drift tube:

$$E_i = iqV_{\max}\sin\varphi$$

Injector: Linac

Instead of drift tubes we can also use RF-cavities

Injector: Cyclotron

Ex.: Cyclotrons in PSI (Switzerland) Up to 600 MeV protons (v = 0.6c)

Classical Cyclotron:

Use for non-relativistic particles (protons, ions, ...)

Cyclotron frequency:

$$\omega_{cyclotron} = \frac{e}{m} B$$

Acceleration Condition:

$$\omega_{_{RF}} = \omega_{_{cyclotron}}$$

Cyclotron frequency is not constant for relativistic particles:

$$\omega_{cyclotron} = \frac{e}{\gamma m} B$$

Then, $\omega_{RF} > \omega_{cyclotron}$

NO acceleration!!

SynchroCyclotron:

RF is decreased to accomplish the condition $\omega_{RF} = \omega_{cyclotron}$

Beam intensity is reduced, less bunches.

IsoCyclotron:

B is increased to keep the cyclotron fequency constant. More effective type.

Injector: Microtron

- Mainly used to accelerate electrons and positrons.
- At low energy, they are a good alternative to Linacs.
 - **Classical microtron:**

- B = constant. Size magnet limits energy.
- Not necessary $\omega_{\!revolution}$ be constant.
- Condition: particles have to "see" the same

RF phase. Therefore, for one turn:

$$\Delta t = \frac{k}{v_{RF}}$$
 K: integer

$$\Delta t = \frac{2\pi}{ec^2 B} \Delta E$$

∆t:time needed for one turn, ∆E: energy gained in one turn
Energy range: typically 25-30 MeV, 3 GHz

Race-track microtron:Improve energy gainUp to 855 MeV (Mainz Microtron)

Linacs are mainly used in:

-Industry (X-ray tubes)
-Medical treatment (Can
-Production of high ener
-Linear Collider (SLAC, I
-Injector for synchrotror

The ALBA Linac

- -Cooling (temperature regulation water loops)
- -Timing
- -Power supply (e.g. Klystrons)

Linac complexity can vary within several orders of magnitude depending on energy, dimension, etc ...

• Bunching system

Along the linac there is magnetic guidance by solenoids and quadrupoles.

Electron sources

Electrons can be generated by different mechanisms

Photon electron RF guns

 $\begin{array}{l} \mathsf{E}_{\mathsf{cath}} = 43 \; \mathsf{MV/m} \\ \tau_{\mathsf{laser}} = 5.8 \; \mathsf{ps} \; \mathsf{rms} \\ \sigma_{\mathsf{laser}} = 0.85 \; \mathsf{mm} \; \mathsf{rms} \end{array}$

 $\begin{array}{l} \mathsf{E}_{\mathsf{cath}} = 8 \; \mathsf{MV/m} \\ \tau_{\mathsf{laser}} = 13 \; \mathsf{ps} \; \mathsf{rms} \\ \sigma_{\mathsf{laser}} = 2 \; \mathsf{mm} \; \mathsf{rms} \end{array}$

By Bruce Dunham, Cornell

Thermoionic cathodes are most used in electron linacs for synchrotron light sources (cheap, reliable, high current, well developed technology,...)

Thermoionic electron gun

Linac injection modes in ALBA

Single Bunch Mode (SBM)

Number of bunches per injection: 1-16 Time interval between bunches: 6-256 ns

Multi-Bunch Mode (MBM)

Number of bunches per injection: 18 - 512 Time interval between bunches: fixed, 2 ns Typical setting: 112 ns width pulse (56 bunches)

The bunching system

- -Compresses the pulse in the longitudinal phase space -Increases the energy up to some MeV (relativistic beam) -In Alba consists of:
 - -1 single cell cavity at 500 MHz
 - -1 single cell cavity at 3 Ghz
 - -1 standing wave buncher, 22 cell cavities, 3 GHz

500 MHz

3 GHz

Sub-harmonic Pre-buncher

Single Cell Cavity working @ 500MHz (fundamental mode)

Freq.	499.654MHz	
No. Cells	1	
Total Length	30 cm	
Q-Factor	21400	
Shunt Impedance	29 MΩ/m	
Average Voltage	30 kV	
Input power	500 W	
Rs/Q	1378.11 Ω/m	
Output Energy	90 keV ± 30 keV (β = 0.56)	

Sub-harmonic Pre-buncher

Velocity modulation to compress the pulse

- •Earliest Particles Slow down
- •Latest Particles Speed up

•Notice that the average energy is not changed

•NEXT: The beam will increase its energy and will be modulated at 3GHz

BUNCHER

may relativistic energy and is ready to be injected into the accelerating sections.

RF accelerating structures

Standing wave structures

Symbrotron Light Facility

 $E_{z}(z,t) = E(z)\cos(\omega t + \phi)$

In a standing wave structure the E-field builds up in time, by multiple reflections Generally they are multi-cell periodic structures fed by a central coupler

 The central coupler should be matched with the structure in order to avoid reflection at the input port (β=1).

Nb: In this case β is NOT the relativistic factor!!

 In order to take into account this coupling another paramete is defined:

Q-loaded factor
$$Q_L = \frac{Q}{1+\beta}$$

• The energy gain is simply given by:

$$\Delta W = q V_0 T \cos \phi$$

Accelerating Sections

In the ALBA Linac: 2 Accelerating structures increase the energy of the beam

Solenoid

Mode	$2/3 \pi$ TW const.grad.	
No. Cells	96	
Total length –L-	3.47 m	
Frequency	2997.920 MHz	
Shunt impedance –r-	63-69 MΩ/m	
Average electric field	10-15 MV/m	
Filling time –T _{f-}	0.88 µs	
Attenuation -τ-	0.63 neper	
Quality factor Q _o	13000	
Energy gain (no beam)	55 MeV @ 20 MW	

Traveling wave structure with constant gradient

- The beam "surfs" on the E-field flowing through the structure.
- The power at the output is dissipated into an external matched load to avoid multiple reflections

RF accelerating structures

Travelling wave structures

Constant Gradient

Iris within adjacent cells gets smaller along the structure \rightarrow E-field on axis is constant

$$\frac{dP_w}{dz} = -2\alpha_0(z)P_w$$

Energy Gain :

$$\Delta W = \sqrt{r_L P_0 L \left(1 - e^{-2\tau_0}\right)} \cos\phi; \ [eV]$$

Constant Impedance

Iris within adjacent cells is constant along the structure \rightarrow E-field on axis decreases

$$\frac{dP_w}{dz} = -\frac{\omega P_w}{Qv_g}$$

Energy Gain :
$$\Delta W = 0.903 \cdot \sqrt{r_L P_0 L} \cos \phi \quad ; [eV]$$

rL	Shunt impedance per unit length
Po	Input power
L	Total length
το	Total attenuation
Φ	Phase of beam respect with the crest of the wave

Klystron amplifier

Klystrons amplifiers provide high power EM field for feeding the RF structures. A klystron can be considered as a "small" linac.

- 1. A continous electron beam is generated by a cathode.
- 2. The first cavity ("buncher)" is fed by an antenna and it gives a velocity modulation of the beam.
- 3. The second cavity ("catcher") is excited by the beam itself.
- 4. The bunching induces the power amplification.
- The EM field generated by the beam is picked up, and it is directed to the RF structure through a waveguide.
- 6. The electrons are then stopped at the collector.

Klystron amplifier

In a klystron amplifier the input power at the buncher is then amplified by the beam through the "bunching" itself.

Typical Parameters for a standard klystron amplifier:

Input voltage	280 kV
Output Power (peak)	35 MW
RF pulse length	4.5µs
Frequency	3 GHz

- Questions?
- Tomorrow more about Linac Diagnostics

Defocusing effects due to:

- Intrinsic divergence of the beam
- Space charge
- RF defocusing

The beam radius is kept < 2.5 mm by using:

- Solenoids (low energy section)
- Quadrupoles (middle energy section)

Magnets in ALBA Linac:

Dipole

- 5 solenoid in the bunching section (Shielded)
- 1 triplet of quadrupoles between the two accelerating section
- 1 triplet at the end of the linac
- 1 Bending Magnet to bend the beam to the Transfer Line or to the Diagnostic Line

Beam Optimization

Fast energy and energy spread measurement

Energy Spread

Energy measurement: MBM, 112 ns, 4 nC, 1 Hz

Quadrupole scan method

1) Beam size as a function of the quadrupole field strength recorded with OTR screen

2) Parabola is fitted to extract the emittance from the fit parameters.

Emittance measurements: MBM, 112 ns, 4 nC, 105 MeV, 1 Hz

Beam transmission

MBM, measured transmission, 70 MeV

Beam mode	Buncher exit	AS1 exit
500 MHz & 3 GHz	96%	66%
3 GHz	83	58
500 MHz	80	47
No cavities	64	37

Sym front Cight Facility

General specifications linac ALBA

Parameter @ Linac SINGLE BUNCH MODE **MULTI BUNCH MODE** Exit Number of Bunches 1 to 16 [18 ... 512] Pulse Length < 1ns (FWHM) [36 ... 1024] ns Bunch spacing 6 ... 256 ns 2ns (500MHz mod.) $Q \ge 1.5 nC$ $3 \le Q \le 4 nC$ Charge ≥ 100 MeV Energy ≥ 100 MeV ≤ 0.5 % (rms) ≤ 0.5 % (rms) Relative energy spread Norm. Emittance (1σ) $\leq 30 \pi$ mm mrad $\leq 30 \pi$ mm mrad Energy Variation Pulse-0.25% (rms) 0.25% (rms) to-Pulse Beam position stability <10% of beam size <10% of beam size pulse-to-pulse Jitter pulse-to-pulse \leq 100 ps (rms) \leq 100 ps (rms) Single bunch purity Better than 1% . . . Repetition rate 1 to 5 Hz 1 to 5 Hz

Bibliography

- 1) T.Wangler, "RF Linear Accelerator" (Wiley, New York 1998)
- 2) P.Lapostolle, "Linear Accelerator" (A.Septier, North Holland, 1970)
- M.Puglisi, "The Linear Accelerator" in "Principles of particle accelerators" (W.A.Benjamin, New York, 1968)
- 4) I.M.Kapchinskii, "Theory of resonance linear accelerator" (Harwood, Chur, 1985)
- 5) Cern Accelerator School, "Fifth general accelerator physics course" (S.Turner, 1992)
- Cern Accelerator School, "RF engineering for particle accelerators" (S.Turner, 1991)