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In designing and constructing an accelerator, physicists and engineers do
their best in making a perfect jobs and in predicting any possible operation
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It their best in making a perfect jobs and in predicting any possible operation

mode for their device.

In most of the cases the ideal machine remains just a concept and one has
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to deal with more real objects where construction tolerances and
unpredicted phenomena generate effects that need to be measured and
corrected.
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In this lecture, we will briefly introduce the typical and predictable errors
affecting real accelerators and the ways to remedy these effects.
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Get the beam around the machine
A perfect machine doesn’t need this
Gross orbit correction (~100’s μm scale)
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Keep the electron orbit through the center of the focusing magnets
Results in better quality electron beam, and hence better quality x-ray beam.
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Steer x-ray beam away from places it shouldn’t be

St th b t th ’ l
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Long lever arm (typically 40-70m) makes it a challenge to get the beam on target.
Electron orbit though x-ray source point defines x-ray trajectory.
Fine orbit correction (<1’s μm scale)
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Sources of photon beam instability can be divided into 2 categories:
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• those associated with beam line optical components and experimental apparatus
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the beam line staff’s problem!

• those associated with the electron beam
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the accelerator staff’s problem!
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• 3rd generation stability requirements :
• intensity stability < 0.1%

y p
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• photon energy resolution < 10-4
• timing stability < 10% bunch length⇒ orbit < 1 5 μm <1 10 μrad beam size < 0 1 %
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• Magnet  modeliong
The real magnets are not the ones used in the simulation codes. Even if 
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the effects of fringe field, changing fields in the body of the magnets, 
etc:
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• Magnet fabrication
In fabrication of the magnets, more divergences from our model will be 
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happen:
Finite precision in the shaping of the pole faces (in the order of  ±20µm

Finite precision in the assembly of the magnets.
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This effect will include additional magnetic fields, that can introduce orbit
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oo distortions, coupling between the planes, change of the optical functions, tune
shifts, and non linear terms in the equation of motion.
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• Magnet Installation
When positioning the magnets in their position at the accelerator complex the
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It When positioning the magnets in their position at the accelerator complex, the 

precision of the positioning is limited, either by the accuracy in the installation 
and the accuracy in the measuring.
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Noise and surroundings
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The magnets will be placed in noise environments.
Long term Causes (Years - months)

G d li h diff i
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Medium - Days/Hours

Sun and moon, day-night variations (thermal), rivers, rain, wind, refills and 
start up sensor motion drift of electronics local machinery filling
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patterns
Short (Minutes/Seconds)

Ground vibrations power supplies injectors experimental magnets air
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• Beta function
Describes the envelope of the betatron oscillation in an accelerator
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Phase advane
The fraction of  the oscillation performed in a periodic cell is called the phase advance  per cell(x or y) 
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Betatron tune: number of betatron oscillations in one orbital turn
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Source of errors 
Dipole field errors
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Dipole misalignments
Quadrupole misalignments

Consider the displacement of a particle δx. from the ideal orbit.
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The vertical field is:

( )yB Gx G x x Gx G xδ δ= = + = +
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( ) 1 2 2( 1) ( ) ( )nn n n n n
y n n n

n nB b x b x x b x n xx x x xδ δ δ δ− −−⎛ ⎞= = + = + + +⋅⋅⋅+⎜ ⎟
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Typical number for imperfections in the storage rings
Girder transverse displacement: 0.1 mm (rms).
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Quadurpole and sextupole transverse displacement with respect to girder: 0.03 mm (rms).
Dipole transverse displacement with respect to girder: 0.05 mm (rms).
Di l ll ith t t i d 0 1 d ( )
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Dipole filed error :  410B

B
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Design orbit defined by main dipole field
On momentum particles oscillate around design orbit
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Off-momentum particles are not oscillating around design orbit, but around 
chromatic closed orbit
Di t f th d i bit d d li l ith t d d
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i Distance from the design orbit depends linearly with momentum spread and 
dispersion
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A single kick (a point-like change in the momentum of the particle) has 
been placed in the lattice we can see the effect of the kick, and that the 
trajectory does not close over itself. .
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Regardless of the location of the disturbance, the entire orbit is affected.

transverse kicks caused by dipole
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i transverse kicks caused by dipole 
errors:
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dipole roll error

j j
j

j j j
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Approximate errors as detla functions in n locations 
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, ; :beta function in the place of error sourcex y jβ
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, ;

,

:beta function in the place of each element

Q  : tune number

b t t i h d

x y i

x y

β

ψ
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, :

 : betatronic phase advance

:  kick produced by jth element 
x y

x y j

ψ
ϕ
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In the ILSF storage ring, the vertical beta function is 23m in the dipoles and 25.32m 
in the quadrupoles and vertical tune number is 11.27 :

BΔ
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It Consider dipole field error is

4 4kick produced by dipole field er 1.55 = (10 )( )=1.1 10
13.81

ror j j
j

B L
rad

B
ϕ

ρ
− −Δ
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410B
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The maximum orbit distortion in the dipoles position is
42 3 1 .1 1 0 2 .1 8

2 s in ( ) 2 s in (1 1 .2 7 )
y

y j
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m m
Q

β
δ ϕ

π π
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For a quadrupole with 0.15 mm displacement 

y

,
4

5  by quadrupole displacement  
(23.49 / )(0.27 )(1.5 10 ) 9.5 10

(0 723 )(13 81 )
jj j x y
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G L
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kick produced

T m m m rad
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ϕ
−
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Δ

→ = =
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(0.723 )(13.81 )j B T mρ

42 5 .3 2 9 5 1 0 2 0 5y m m
β

δ ϕ −= × = × × =
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Consider random distribution of errors in N magnets
The expectation value is given by
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Examples
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In the ILSF low field storage ring there are 56 dipole and 252 quadrupole 
magnets
The expectation value of the orbit distortion in the dipoles
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p p

And in the quadrupoles

4
0

23 23 56 1.1 10 8.789
2 2 sin(11.27 )

y mm
π

−× ×= × × =
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The control and correction of the closed orbit is one of the most
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It The control and correction of the closed orbit is one of the most

fundamental aspects of the operation of one storage ring, both for
synchrotron light sources or colliders. In a synchrotron light source, we
want to provide the beam to the users accurately down the beam lines to the
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i want to provide the beam to the users accurately down the beam lines to the
users, and in a collider we have to make sure that the beams collide. In
modern machines, this requires an stability of the closed orbit down to the
sub-μm. Additionally, orbit control is also the first step in the correction of
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focusing error and coupling; and is required for a good beam lifetime
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To correct the orbit, two components are needed:
1 Monitors to detect the position of the particles Usually are the beam position
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monitors or BPMs, but is also possible to use the synchrotron light to measure
the position of the particles. Modern BPM system offer sub-μm resolutions in
the measurement of the closed orbit, offering sampling rates from the 10 kHz
( ) h ff h ibili h bi b
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2. Actuators to compensate for the orbit deviation. These steering or corrector 

magnets allow the operator to apply dipolar field to compensate for dipolar 
error along the machine Can be extra dipolar magnets or extra coils in some
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of the existing magnets.
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Distribution of corrector magnets and BPM
place orbit corrector and BPM next to the main quadrupoles

ia
tio

n 
an

d 
It place orbit corrector and BPM next to the main quadrupoles

horizontal BPM and corrector next to QF

vertical BPM and corrector next to QD
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Distribution of correctors and BPMs 
i ILSF b S h
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If     is a vector containing the change in the setting of one corrector magnet, and       
is the change in the reading of the BPMs, then the response matrix M is defined 

cΔ
uΔ
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M can be calculated from the model of the machine, using one of our accelerator 
physics code, or may be measured in the real machine, changing the setting of the 

d di h h i BPM di
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The most direct method of correction the orbit consist in inverting M to 
predict the change in corrector magnets to compensate an measured closed
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It predict the change in corrector magnets to compensate an measured closed 

orbit.
This is not in general possible: M is not square in general, or can be 
degenerated.
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Clever algorithms such as Singular Value Decomposition can be used to 
perform a pseudo-inversion of the response matrix
Methods not based in the inversion of M such as local orbit bumps will
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help in those cases, or when for some reason we do not know the response 
matrix.
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Response matrix for ILSF storage ring(in hardware unit)
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SVD is algorithm to invert non-square matrices. A matrix R of 
dimensions M× N can be written as:
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SVD decomposition: R = U ×W × V⊤
where:
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i where:
U is an unitary matrix (U × U⊤ = U⊤ × U = I) of dimensions M×M.
V is an unitary matrix (V × V⊤ = V⊤ × V = I) of dimensions N × N.
W is a diagonal matrix of dimensions M× N where all the elements are
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positives or  null, and are called the SVD eigenvalues.

SVD inversion:

IL
SF

 S
ch

oo 1

1     =V T
M M M

c M x
W U x

−

−

Δ = Δ
× × × Δ where W−1

M is a diagonal matrix of dimensions N ×M

3rd

ILSF-IPM, Sep. 2013 25



io
ns Closed orbit correction

It
s A

pp
lic

at
io Closed orbit correction

Closed orbit correction for ilsf booster synchrotron
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Distribution of correctors and BPMs in 
ILSF booster Synchrotron
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Closed orbit before correction
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The static correction compensate the expected errors due to misalignment of the magnets and
error in the dipolar field component of the bending magnets (150 μm error in the girders,

ia
tio

n 
an

d 
It 50μm of the elements in the girders). The required strength is in the range 100 to 400 μrad.

Closed orbit stabilization performed using slow and fast orbit feedback system.

The target in the orbit feedback is to stabilize the orbit down to submicron stability
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at the position of the insertion devices.
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Closed orbit stabilization performed using slow and fast orbit feedback system.
Slow feedback operates every few seconds (~30s for ESRF storage ring) and uses 

l t t f BPM ( 200 t ESRF) f b th l
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It complete set of BPMs (~200 at ESRF) for both planes

Efficient in correcting distortion due to current decay in magnets or other slow 
processes
Fast orbit correction system operates in a wide frequency range (0 1Hz to 150Hz
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i Fast orbit correction system operates in a wide frequency range (0.1Hz to 150Hz 
for the ESRF) correcting distortions induced by quadrupole and girder vibrations.
Local feedback systems used to damp oscillations in areas where beam stabilization 
is critical (interaction points, insertion devices)
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