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Fourier holography Gabor (in-line) holography 



Gabor  Internal source  

T 

XFH 

Szöke 1985 

T 

T 

T 

E E 

E 

MXFH 

EEH 

XFH 

Tegze et al 1991 

Tegze et al 1996 Gog et al 1996 

XFH – Timeline Milestones 



XFH – the internal source scheme 

I(k)

A

 j

 r
j

R

FE ,k

A - reference atom 

j 
r - position vector of j-th atom 

F E - energy of x-ray fluorescence from A 

k - wave vector 

R - sample - to - detector distance 

A. Szöke, AIP Conf. Proc. 147, 361 (1986) 



XFH – theoretical background 



XFH – theoretical background 



XFH – theoretical background 



MXFH – the internal detector scheme 
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T. Gog, P.M. Len, G. Materlik, D. Bahr, C.S. Fadley and C. Sanchez-Hanke 

Phys. Rev. Lett. 76, 3132 (1996). 
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The angular region Jmax determines the resolution of the reconstructed images:  

The angular resolution of the experiment DJ determines the maximum radius rmax of the region 

around the emitter where meaningful information can be obtained:  

e.g.  rmax = 10 l      D 1 deg. 
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The effect of experimental parameters 



 Internal source 
scheme 

Internal detector 
scheme 

 
Source: 

scanning 
detector 

scanning 
source 

Flux The higher the better 

Collimation NOT REQUIRED Low-pass filter 

Monocromaticity NOT REQUIRED YES 

 
Sample: 

 
 

An ensemble of emitters, surrounded by an arrangement 
of scatteres which appears the same from whichever 

of the emitters it is seen. 

 
Detector: 

 

Energy 
selective 

YES, to get rid of the exciting radiation scattering 

Sensitive area Low-pass filter TBTB 

Count rate YES YES 

 
 

Designing the experiment 
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Suitable for both schemes 

 

PIN diode 

 

Analyser crystal  

+ fast scintillation counter 

 

Foil filter + photodiode 

experimental set-up at ELETTRA 



Precession Sample Holder 

tilt angle adj.

sample

attachment support

motor

rotation axis



ionization 

chamber 

X ray Fluorescence Holography experiment at the ELETTRA diffraction beamline 

alignment 

base 

slit sistem 

4-circle 

goniometer 



w: [0-75 deg]; c: [0-90 deg]   1377 pixels 

5 sec/pixel 

3 hours total time 

4 106 counts/sec per pixel 

Normalization for primary beam 

Low pass filter (~ 8 deg) 

High pass filter 

Measurement 



Reconstructed holographic image of GaAs(001), plane z=0 

XF Hologram of GaAs 

E.Busetto, M.Kopecky, A.Lausi, R. Menk, M.Miculin, and A.Savoia  
Phys. Rev. B, 62 5273 (2000) 



Area detector experimental set-up 
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Sample size: 2 x 2 x 0.05 mm3 

 

Filter size: 100 x 100 mm2 

 

Sample-to-detector distance: 80 mm 

 

64 images: 

filter moved on a 8x8 mesh of positions with 2 

mm pitch 

+64 normalization images 

 

about 3 h for 128 images 



Area detector raw data 



Area detector hologram + Kossel lines 



Area detector hologram 



Area detector hologram reconstructed image 



Area detector alternative experimental set-up 

CoO sample size: 2 x 2 x 1 mm3 

Fe filter size: 100 x 100 mm2 , 50 mm thick  

E = 8.0 keV (Co K-edge @ 7.7 keV) 

EF = 6.9 keV 

Sample-to-detector distance: 80 mm 



Area detector raw data 2 



Area detector hologram + Kossel lines 2 



Area detector hologram 2 



CoO hologram  



M.Kopecky, E.Busetto, A.Lausi, M.Miculin, and A.Savoia  
J Appl Phys 78, 2985 (2001) 

CoO hologram -  detail  



Application to diffraction pattens 

Scattering from a cluster of atoms 

Diffraction pattern calculated 

for a small cluster (eight unit 

cells) of rock salt at an 

energy of 18.2 keV. The plot 

coordinates are defined as 

k’= k/k. 

The incident wavevector k0 = 

(0, 0, k) is supposed to be 

perpendicular to a 

face of the unit cell; plot axes 

coincide with the 

crystallographic axes. 
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Real-space image 

The function P(r) in the 

plane z = 0 obtained from 

the simulated diffraction 

pattern. The positions of 

local maxima coincide with 

interatomic distances. 
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Test: diffuse scattering from crystal 

 

Photon energy 18.2 keV.  

Sample surface in the xy 

plane oriented 

perpendicular to the 

incident beam with a 

wavevector k0 = (0, 0, k).  

Diffuse X-ray scattering from an NaCl crystal recorded on a CCD detector.  



Diffuse scattering reconstruction 



X-Ray Diffuse Scattering Holography - theory 

(Kopecký M.: J. Appl. Cryst. 37, (2004), 711) 

  

rn º (0,0,0)If and 



X-Ray Diffuse Scattering Holography - theory, continued 

(Kopecký M.: J. Appl. Cryst. 37, (2004), 711) 



X-Ray Diffuse Scattering Holography - data 

Diffraction patterns Hologram 

Rubidium Chloride E = 15.06 keV,   E = 60 eV 

z=0 z=0 

(Kopecký et al., Appl. Phys. Lett. 87 (2005), 231914



X-Ray Diffuse Scattering Holography - reconstruction 

Pair distribution function Electron density 

z=0 z=0 

(Kopecký et al., Appl. Phys. Lett. 87 (2005), 231914) 



GaMnAs layers 

= diluted magnetic semiconductor (magnetic and semiconducting properties) promising for spin electronics 

Magnetic properties (e.g. Curie temperature TC) are strongly  related to Mn sites: 

  Mn in substitutional position act as an acceptor and created a hole 

  Mn in interstitial position acts as a double donor and passivates two holes 

 

c-RBS and c-PIXE  (channeling Rutherford backscattering and particle induced x-ray emission  

   - presence of interstitials can be verified  

 

Indirect methods 

Concentration of interstitial atoms is often estimated by comparing experimental data with theoretical models using: 

   - changes of a lattice parameter due to interstitial atoms 

   - integral intensities of weak Bragg reflections 

 

XFH  (x-ray fluorescence holography)  

   a three-dimensional atomic image around Mn atoms in Zn0.4Mn0.6Te 

   application to very thin Ga1-xMnxAs layers with low concentration of dopants (x < 0.1) is problematic because of the weak 

fluorescence signal 

 

XDSH  (x-ray diffuse scattering holography)  

   a three-dimensional atomic image around Mn atoms in GaMnAs 



GaMnAs layers -Experimental Configuration 

material science beamline ID11 at the European 

Synchrotron Radiation Facility in Grenoble, France  

(J. P. Wright) 

GaMnAs layers grown by low-temperature MBE, 

Institute of Physics, Prague (M. Cukr, V. Novák, K. 

Olejník) 

photon energy 30 keV 

conditions of total reflection (grazing angle of 

0.07°) 

beam size 300 μm (horizontal) × 10 μm (vertical) 

16-bit CCD camera  

FreLon2k16 (2048 × 2048 pixels, pixel size 46 × 

46 μm2) 

sample-to-detector distance 65 mm 

exposure time 20 s per frame  



GaMnxAs layers at lower concentration of Mn: x = 0.02 

Diffraction patterns Hologram 

isomorphous 

replacement 

GaMnAs 
×  

GaAs 

Electron density 

= local neighborhood of 

dopants 

Reconstruction 

algorithm 

Mn atoms in  

SUBSTITUTIONAL 

POSITIONS 

 (Kopecký et al., J. Appl. Cryst. 39 (2006), 735) 



X-Ray Diffuse Scattering Holography - advantages 

X-ray fluorescence holography 

- low signal-to-background ratio (~ 0.1 %) 

- intense and dense Kossel line patterns 

- virtual images 
 

solved by XDSH 

- signal-to-background ratio 1-10 % 

- discrete (and thus removable) Bragg peaks instead 

of Kossel lines 

- virtual images can be removed by measuring a 

complex hologram (for centrosymmetric samples, 

virtual image = real image) 

 - wavelength of x rays of the same order as interatomic 
distances 

 =>  strong artefacts in the reconstructed image 
 

solved by multi-energy anomalous diffuse scattering 

(MADS) 

Overcomes experimental 

difficulties: 

Fundamental problem: 



Multi-Energy Anomalous Diffuse Scattering  

MADS extends principles of XDSH to three dimensions 

                                 intensities measured at  

 TWO-DIMENSIONAL                          THREE-DIMENSIONAL  

             surface                                                     region 

                                 in the reciprocal space 

reconstructed real-space-image  

 STRONG ARTEFACTS                            FREE OF ARTEFACTS 

XDSH                         MADS                        vs 

(Kopecký M., Fábry J., Kub J., Lausi A., Busetto E.: Phys. Rev. Lett. 100 (2008), 195504) 



Multi-Energy Anomalous Diffuse Scattering  

vs 

(Kopecký M., Fábry J., Kub J., Lausi A., Busetto E.: Phys. Rev. Lett. 100 (2008), 195504) 

MADS applies principles of MAD to diffuse scattering 

                                  intensities measured in  

 DISCRETE POINTS                               CONTINUOUS REGION  

     (Bragg peaks)                                     (diffuse scattering) 

                                   in the reciprocal space 

                                      provides information on  

    LONG-RANGE ORDERING               SHORT-RANGE ORDERING 

 MAD                         MADS                        



Multi-Energy Anomalous Diffuse Scattering  

Three-dimensional pattern of 

diffuse scattering intensity  

of a SrTiO3 single crystal  

collected at the photon energy 

of 14 keV 



Multi-Energy Anomalous Diffuse Scattering  

The anomalous diffuse 

scattering pattern 

obtained as a difference of 

two diffuse scattering 

patterns  

recorded at energies of 14 

keV  and 16.055 keV 

(i.e. 50 eV below the K 

absorption edge of 

strontium) 



Multi-Energy Anomalous Diffuse Scattering  

Reconstructed image of the atomic planes parallel to the (001)  

crystallographic plane at z = a and z = 3a/2 (a = 3.905 Å) 



Thanks… 
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