

RF systems

Francis Perez

Definition:

An **RF power amplifier** is used to convert a low-power RF signal into **a high power**.

- There are several types of amplifiers with different characteristics.
 - Frequency
 Power
 Maintenance cost.
 Efficiency.
 Size and weight.

- Tetrodes Grided tubes
- Klystrons
- Inductive Output Tubes
- Solid state amplifiers

vacuum tubes

Grided Tubes - Tetrode

- Gridded Tubes (electron tubes)
- Frequency range: 0...0.5 GHz (tetrodes), 0...3 GHz (triodes)
- Power range:
 - for CW (continuous wave) up to 30 MHz: 1 MW
 - at 300 MHz: 200 kW
 - pulsed at 200 MHz: 4 MW
- Medium reliability, lifetime cathode limited to 5000...40000 hours
- Relatively robust
- Inherently medium to high voltage, low current devices
- Density modulated
- High gain at low frequencies, medium gain at high frequencies

F. Caspers, M. Betz; JUAS 2012 RF Engineering

Active elements

Grided Tubes - Tetrode

- Filament burns off electrons
- acceleration in DC field
- density modulation by grid
- => voltage controlled current source

F. Caspers, M. Betz; JUAS 2012 RF Engineering

Grided Tubes - Tetrode

Grid tubes:

- \succ Evolution of **Triodes**.
- \succ Electrons produced at the cathode;
- Intensity at the Anode is modulated by the Control grid.
- \succ Screen grid \rightarrow RF isolation.

Used at MaxLab 100 MHz 30 kW

Frequen cy (MHz)	Max. power (kW)	Efficien cy (%)	Main Features	Main drawbacks
Up to 200	200/ tube	η ≤ 70	Simplicity.Low cost.	High voltage.Transit-time limited.

One will use for low frequencies

- Klystrons
- Frequency range: 0.3...10 GHz
- Power range:
 - CW at 350 MHz: 1 MW
 - pulsed at 3 GHz: 30 MW
- Medium reliability, lifetime cathode limited
- Needs expert care
- Inherently very high voltage device
- Velocity modulated
- ◆ Very high gain (≈40 to 60 dB, about 10 dB per passive resonator)
- Tend to be noisy (acoustically and electrically)

Klystron principle:

- ▶ High electron DC current produced in the **klystron gun**.
- Electron beam is velocity **modulated in the first cavity**.
- \succ Velocity modulation \rightarrow Density modulation.
- ▶ RF power output is **extracted from a output cavity**.

8 A

- High electron DC current produced in the klystron gun.

- Current velocity modulated in the first cavity by the driving power.

- The e-beam is then grouped in pulses, which are enhanced in three intermediate cavities (shorter pulses)

- This pulsed stream induces a high field in the last cavity, out of which the high power is decoupled.

Klystron modulators

ALBA Linac: Frequency: 3.0 GHz Output Power: 30 MW Gain > 40 dB

3 GHz – multicell structure

Frequenc y (GHz)	Max. power (MW)	Efficiency (%)	Main Features	Main drawbacks
0.3 - 30	~ 2 (HP tubes) ~100 (Pulsed tubes)	40 ≤ η ≤ 60	 High power. High gain. Controlled output. 	High voltage.Efficiency.

One will use for high power

IOT (Inductive Output Tube)

- IOTs combine design aspects of Triodes and Klystrons.
 - From **Triodes**:
 - Cathode.
 - ➤ Grid.

LBA

- Density modulated.
- From Klystrons:
 - Linear beam
 - Magnetic focussing field.
 - Output cavity
 - Collector

IOT

IOT

Frequenc y (MHz)	Max. power (kW)	Efficienc y (%)	Main Features	Main drawbacks
100 - 2000	100 /tube	η ≤ 80	 Efficiency. Reliable and cheap. 	 High voltage. Power limited at high frequencies,

One will use for high eficiency

RF transmitter/modulator

In terms of power, its function if to transform a DC power (high voltage) into an RF power (voltage)

High Voltage Power Supply: HVPS

ALBA

High Voltage Power Supply: HVPS

HVPS

IOT

High Voltage Power Supply: HVPS

Built up with 60 modules in series of 700 V each

Klystron modulators

500 MHz - 5 cell Petra type

IOT transmitter

ALBA Booster IOT: Frequency: 500 MHz Output power: 80 kW

SR RF

IOT transmitters

500 MHz – Dampy cavity

ALBA SR IOTs: Frequency: 500 MHz Output power: 160 kW 2 × 80 kW IOT.

Semiconductors

- Bipolar transistors
- Field effect transistors
- many others
- Frequency range: 0...100 GHz
- Power range: from close to thermal noise level to many kW
- High reliability, but lifetime not infinite (thermal fatigue, metal migration, etc.)
- Often unforgiving, failure is normally definitive
- Inherently low-voltage, high current devices compared to tubes
- Low to medium gain

F. Caspers, M. Betz; JUAS 2012 RF Engineering

Active elements

Transistors

Structure of an advanced pulse-doped MESFET

High Power and Low Distortion GaAs FET

- The power required is obtained by operating numerous transistors in parallel.
- Technologies available:
 - > Si bipolar transistors.
 - > Si LDMOS.
 - GaAsFET.
 - > SITs

6th generation LDMOS → BLF578 : 650 W modules

Power combination components

2-way splitter

8-way splitter

P_i - P, monitoring coupler

SOLEIL

SSA need voltage to voltage converters

220 V ac to 50 V dc needed by the transistor

High efficiency (96%) 220 V_ac / 50 V_dc power converters

SOLEIL

Frequenc y (GHz)	Max. power (kW)	Efficienc y (%)	Main Features	Main drawbacks
0 - 10	0.5/ Module	η ≤ 40	 Modularity. Low maintenance. Graceful degradation 	 Efficiency. Combiner losses. Transistor isolation.

One will use at medium frequencies, for high reliability

Thank you

Questions?