



# The Canadian Light Source and the Biomedical Beamline Facility



Dean Chapman Science Director, Canadian Light Source University of Saskatchewan





# Plan

- Brief Overview of the Canadian Light Source
- Design of the Biomedical Imaging and Therapy Beamlines



# **CLS Timeline**

- September 27, 1999 Groundbreaking ceremony
- February 26, 2001 Building dedication ceremony
- September 18, 2002 Booster ring commissioning complete
- December 9, 2003 First synchrotron light detected
- October 22, 2004 Official opening
- May 27, 2005 First CLS user
- June 30, 2005 Official completion of the CFI project

# **Capital Investment to Date**



Original Construction (7 beamlines)

\$141M

Phase II (7 beamlines)

\$52M

Phase III (7 beamlines & upgrade)

\$68M

Isotopes Project

\$12M



### **CLS Features**

- Canada's national synchrotron facility
- One of the world's first ~3 GeV synchrotrons
  - Superconducting RF cavity
  - Canted insertion devices
  - Hard X-rays from superconducting wigglers
- Full spectrum of photon energies for spectroscopy (THz to hard X-rays)
- Other highlights: STXM, medical imaging, soft X-ray REIXS, soil science and mining applications



# **CLS Layout**



# **Energy Range**







# Users and User Visits





# Peer Review Access

|                            | 2009 | 2010 | 2011 | 2012 |
|----------------------------|------|------|------|------|
| Number of shifts requested | 1768 | 2675 | 3456 | 4410 |
| Number of shifts allocated | 1252 | 1816 | 2203 | 3168 |
| Oversubscript ion          | 41%  | 47%  | 57%  | 39%  |

1 shift = 8 hours of beamtime

# User Base





Based on # of users (2012)

Canada – SK: 44% Canada – Other: 35% International: 21%

### Based on shifts:

| Geographic<br>Distribution | 2008     | 2009         | 2010      | 2011      | 2012      |
|----------------------------|----------|--------------|-----------|-----------|-----------|
| Canada - SK                | 560      | 590          | 716 (30%) | 1106      | 1184      |
|                            | (46%)    | (35%)        |           | (38%)     | (36%)     |
| Canada - Other             | 554      | 828          | 1232      | 1304      | 1370      |
|                            | (45%)    | (49%)        | (52%)     | (44%)     | (42%)     |
| International              | 114 (9%) | 275<br>(16%) | 406 (17%) | 532 (18%) | 728 (22%) |

10



# **Broad Range of Disciplines**

- Environmental and Earth Sciences Life Sciences
- Macromolecular Crystallography Material and Chemical Sciences
- unclassified





# Students and Postdocs





# Some CLS Stats

| Beam energy                 | 2.9 GeV                            |  |
|-----------------------------|------------------------------------|--|
| Circumference               | 171 m                              |  |
| Number of straight sections | 12                                 |  |
| Average current             | ~200 mA                            |  |
| Top-up                      | No                                 |  |
| Horizontal emittance        | 18.2 nm rad                        |  |
| Facility employees          | 215                                |  |
| Phase I cost                | \$173M<br>(7 Phase I<br>beamlines) |  |
| Operating costs (2013)      | \$28M                              |  |

| Opened for peer-<br>reviewed users       | 2006        |
|------------------------------------------|-------------|
| Beamlines producing publications in 2013 | 13          |
| Funded beamlines                         | 22          |
| Publications in 2013                     | 242*        |
| Shifts requested / allocated in 2013     | 4788 / 3077 |
| Oversubscription factor 2013             | 1.56        |
| Users/User visits 2013                   | 883 / 1630  |
| Publications/Beamline                    | 19          |
| Publications/100 shifts                  | 5.5         |
| Publications/User                        | 0.28        |
| Publications/User Visit                  | 0.15        |
| Publications/\$1M<br>Operating Cost      | 8.9         |



# Biomedical Imaging and Therapy (BMIT) Beamlines

Some design considerations based on proposed user programs

# Technology –



### Synchrotron Biomedical Imaging Methods

### **Projection and CT**

- Absorption Imaging
  - Uses tunability
- K-edge Subtraction
  - Uses tunability
- In-Line Phase Contrast Imaging
  - Uses high source brightness (small source size)
- Analyzer Based Imaging / Diffraction Enhanced Imaging / Multiple Image Radiography
  - Uses high source brightness (high intensity)
- Grating (Talbot) Interferometry Imaging (in progress)
  - Uses brightness
- High Resolution Imaging / Microtomography
  - Uses high source brightness (intensity & source size)
  - Can apply most of above imaging methods



seniss



# LOCATION, LOCATION, LOCATION







# 05B1-1 Beamline Overview

| Source:                         | Bending Magnet: White/Mono Beam   |
|---------------------------------|-----------------------------------|
| Monochromator:                  | Double Crystal Mono (Bragg)       |
| Spectral range:                 | 8 – 40 keV (temp limit 15-40 keV) |
| Resolving power (Mono):         | 1x10 <sup>-4</sup>                |
| Beam size:                      | 240 mm (H) x 7 mm (V) @ 25 m      |
| White Beam Power:               | ~350 W (250 mA, 2.9 GeV)          |
| Max. Power Density:             | ~2.3 W/mm² (250 mA, 2.9 GeV)      |
| Max. dose rate using pink beam: | ~4 Gy/min @ 250 mA @ 50 keV       |



# BMIT Superconducting Wiggler

# 4.3T max field 4.8cm period25 full field poles 2 half field poles

- 15kW @250mA ringcurrent
- 30kW @500mA
- Highest field to period ratio in world





# BMIT Beamlines – one bend & one

wiggler



CLS Bend  $B_0 = 1.354T$ Ec = 7.57keV BMIT Superconducting Wiggler (Bukder, Novosibirsk, Russia)  $B_0 = 1.0$  to 4.3T  $\lambda_u = 4.8$  26 effective poles (25 full, 2 half)

K = 4.5 to 19.3

Ec = 5.6 to 24.0



# Wiggler Beamline Filter Assembly

- Filter assembly had shipping plate and bolts on bottom
- Missed in final assembly
- Beam hit plate and bolt –





# Choice of Wiggler Characteristics

- Imaging
  - 20 to 100keV
  - High flux
- Microbeam Radiation Therapy (MRT)
  - High dose rate @ 100keV
- Wiggler
  - Need for high x-ray energies => high B
  - Need for high flux => large number of poles
  - Efficiency => small period
  - Front end power limitation of ~30kW @ 500mA



# Insertion Device Optimization for Imaging and MRT





### **BMIT** Instrumentation

- Unique Large Positioning Systems
  - Large Animal Positioning System (LAPS)
  - Microbeam Radiation Therapy Lift (MRT Lift)
  - Detector Positioning Systems (POE2 and SOE)











Large Animal Positioning System





Large Animal Positioning System





Large Animal Positioning System













# MRT Lift in operation...





# SOE Detector Holder

- Positions detector for all imaging modes
  - KES
  - DEI/MIR
  - In-Line Phase
  - ...
- Granite stand it front holds DEI Analyzer







# Analyzer Based Imaging / Diffraction Enhanced Imaging System



**Bend Magnet System POE1 & 2** 

detector

# 17 Dec 2008 Mouse @ 41keV ~2mGy exposure

# BMIT Lives!!









# POE 2 BM Analyzer and Detector Holder

- Position detector for same modalities as in SOE
- DEI Analyzer in front of holder with analyzer in place





# Analyzer Based Imaging System @ BMIT BM





# **Analyzer Control System**



# Si(4,4,0) @ 40keV









# Earliest Signs of Osteoarthritis...

**DEI CT of Piglet Joints** 



DEI CT Refraction Image 40keV BMIT 05B1-1

Glendon Rhoades, Alan Rosenberg, Sheldon Wiebe, Chapman, et al



# Conclusion

- Unique opportunity and environment for biomedical research
- Very flexible facility –
   "wind tunnel"



- Training a new generation of scientists in interdisciplinary research
- Insertion Device beamline recently on-line
- New concepts to expand utility of beamline
- We have just started...



 $\begin{bmatrix} 0.325 & 6.58 \\ 0.322 & 35.4 \end{bmatrix}$ 

You can contact us at

<u>dean.chapman@usask.ca</u>

tomasz.wysokinski@lightsource.ca

### BMIT is supported by:

Canada Foundation for Innovation
Province of Saskatchewan
Western Economic Diversification
SK Heart & Stroke Foundation
SK Health Research Foundation
Saskatoon Health Region
Royal Univ. Hospital Foundation
City Hospital Foundation
Regina Qu'Apelle Health Region
Hospitals of Regina Foundation
Canadian Cancer Society - SK

Saskatchewan Cancer Agency
Alberta Cancer Board
Breast Cancer Society of Canada
University of Saskatchewan College of Medicine

Western College of Veterinary Medicine

 $\rho_M t_M$ 

College of Kinesiology

Department of Psychology

College of Nursing
College of Dentistry

College of Agriculture

Canadian Light Source





